3 SEQ2 WIN STATE MACHINE.

This section will provide some insight into the first of 4 slave state machines, the “Win State
Machine”. The real work of the Tic Tac Toe program is performed with the slave state machines.

The Win State Machine scans through the board looking for an opportunity for the PLC to win by
playing a single square. You can think of this as pattern recognition, but | think of it as brute
force ladder logic.

3.1 Sea2 WIN STATE MACHINE DIAGRAM.

Figure 7 Win State Machine Diagram provides is the thing that you need to look at. This state
machine is slave the the main state machine and simply scans the game board for an
opportunity for the PLC to win the game.

The Win State Machine uses the COUNTER, Seq2, to manage its state. You will notice that the
RELAY, RxCxChkW:in is used to control 3 transitions:

1. Transition from Seq2:0 to Seq2:1 when the RELAY, RxCxChkWin, is asserted. This RELAY
is controlled by the main state machine. This RELAY controls the starting of the state
machine.

2. Transition from Seq2:8 to Seq2:0 when the RELAY, RxCxChkWin, is de-asserted. Seq2:8 is
reached after all tests to “see” if the PLC can win have failed. While in Seq2:8 a RELAY is
asserted that feeds back to the main state machine indicating that no winning move
could be found. In response to this RELAY, the main state machine will de-assert
RxCxChkWin.

3. Transition from Seq2:31 to Seq2:0 when the RELAY, RxCxChkWin, is de-asserted.
Seq2:31 is reached if this state machine found a way to win and while in this state a
RELAY is asserted that feeds back to the main state machine indicating that the winning
move has been made.

You should, also, notice that the transitions from Seq2:1 through Seq2:9 have no labels to
indicate when these transitions are valid. | was being lazy and didn’t clutter the state diagram
with text. States Seq2:1 through Seq2:8 test for the possibility of a win for an indivdual game
square. If a test did result in a Win, then the state machine transitions to State 31, Seq2:31. If If
the test does not result in a Win, then the state machine advances to the next state, say form
Seq2:1 to Seq2:2. The PLC code that implements the state transition rules ensures that all of this
happens in an orderly fashion and if there isn’t a square that the PLC can take to win the game
the state machine will work its way done to Seq2:9

14

Seq2:1
Evaluate
R1C1 Win

RxCxChkWin

Seq2:2
Evaluate
R1C2 Win

Seq2:3
Evaluate
R1C3 Win

IRXCxChkWin

Seq2:4
Evaluate
R2C1 Win

Win

Seq2:5
Evaluate
R2C3 Win

Win

Win

Seq2:6
Evaluate
R3C1 Win

Win

IRXCxChkWin
Seq2:7
Evaluate L
R3C2 Win Win
Seq2:9 Seq2:8
No Evaluate
Win R3C3 Win

Figure 7 Win State Machine Diagram

3.2 SEQ2 WIN STATE MACHINE TRANSITION RULES

Figure 8- Win State Transition Rules is the ladder logic implementation. You should notice that
the ladder logic implementation is much simpler for the Win State Machine than what was done
for the Main State Machine. The simpler implementation took advantage of two things:

15

1. The [AVseq] mechanism was used to simply increment the Seq2 counter to go to the
next state when the previous state did not result in a “win”.

2. .The [AVseq] ladder logic requires a minimum of 2 ladder logic scans to detect a rising
edge condition. Each state transition from Seq2:1->Seq2:9 must be maintained for one
full scan time. The [AVseq] mechanism actually forces the state machine to remain in
states 2:1 through 2:9 for 2 full scans. This is just fine. The RELAY, FastClk, ensures that
the timing requirements are met for the use of [AVseq].

n RxCx Win Seg2:31
30 I ITS? [StepN]
. RxCx_ChkWin RxCx Win RxCx_NoWin FastClk Seq2
31] L | 187 i | |ees (AVseq)
lst.Scan Seqg2:0
32 [StepN]

|
I
Seq2:9 RxCx_ChkWin
| 1 | L
11

w
("}

1
|
I

|

1
eq:

|

1

Figure 8- Win State Transition Rules

3.2.1 What happens On Each State?

The state transition rules were handled in the previous section. Now we will look at what
happens on a state by state basis. Please refer to to Figure 9 Win State Machine Hardware
Actions.

16

