2.11.1 State Transition rules

The rules that determine the current state for the state machine are implemented in ladder
logic. Compare Figure 3 Main Loop State Machine Diagram with the ladder logic in Figure 4

Main State Machine Transition Rules. Compare the circle and arrow diagram against the ladder
logic and you will find that for every arrow in one figure there is a bit of ladder logic that ensures
that the PLC code will match the diagram.

The rules are written backwards. The rule for state 31, Seq1:31, is written first. The rule for
State 30 will follow and the last rule is how we get to State 0. This is done to ensure that the
ladder logic scanner will set the current state once and only once per scan of the ladder logic.

Look at the rule that determines when the state machine is in state 0, Seq:0. Notice that there
are two possible ways to get to state 0, on the first scan of the ladder logic and from State 31,
Seq:31. The first scan part is how | handle initialization of the state machine on power up and
this should make perfect sense. Going from state 31 to state O is a bit tricky and the ScanDelay
contact is added into this rung to prevent a terrible problem.

OK what is the problem? It is possible for the ladder logic scanner to evaluate the first rung and
set the current state to 31 and then when it gets to the last rung change to state 0. The problem
is that the the ladder logic that might be active when in state 31 will never be evaluated. The fix
was to add the ScanDelay contact. What is done is that latter in the PLC program you will find
that the ScanDelay RELAY is only asserted when we are in state 31. Since we just transitioned to
state 31, this RELAY will not be asserted and the ladder logic scanner will not change the state to
0.

Seql:3 RxCx_Block Seql:31
5 |1 | |91
11 11 [StepN]
Segl:4 RxCx_Special
i i |r§g
11 1
Seqgl:5 RxCx Move
*I r99 |
Seql:30
| |
11
Seql: 0 NewGame Seqgl:30
6 I'} | e [StepN]
Seq|1|:28
11
Seqgl:29
| |
[
Seql:2 RxCx Win Seqgl:29
’] | L [StepN)
Seqgl:5 RxCx_NoMove Seqgl:28
8 ||] [£100 [st
11 I epN]
Seql:4 RxCx_NoSpecial Seql:5
9 || | |96
11 [StepN]
Segl:3 RxCx_NoBlock Seql:4
10 | | | 92 [St
I I epN]
Seqgl:2 RxCx_NoWin Seql:3
11 | | | |88 [StepN
I 11 PN]
Seql:1 GameDelay Seql:2
12 [| 119 [StepN]
Segl:0 HumanPlayed Segl:1
13 | | | 81 [St
11 11 epN]
lst.Scan Seql: 0
14 | |
11 [StepN]
Segl:31 ScanbDela
9 83" |

Figure 4 Main State Machine Transition Rules

2.11.2 What PLC hardware is affected by each state?
The primary task of the Main State Machine is to sequence the running of the subordinate state
machines to determine which square the PLC should take.

10

Error! Reference source not found.Seql:1 — while in this state the TIMER, GameDelay is enabled. This
TIMER determines the amount of time that this state is maintained. When the TIMER’s contact
goes active the state will changed based on the state transition rules.

Seql:2 .. Seql:5 — each of these states results in a single RELAY being made active. The active
RELAY enables a slave state machine that will make form 1 to 9 evaluations to determine if a
move by the computer can be made. Think of the main state state machine as a benevolent
overlord with the real work being done by the slaves.

Seql:31 —when in this state, the RELAY, ScanDelay is active. This RELAY is used by the state
transition logic to ensure that the state machine will stay in this state for a minimum of one full
scan time.

Now look at the bottom of the ladder logic in the previous figure. This section of logic controls
three RELAYs: Play, Win and Draw. These RELAYS provide the current state of the PLC to an
external HMI. Later on I'll let you know that the HMI reads all 3 of these RELAYS as part of a
single 16-bit transfer.

2.11.3 Custom Functions

The hardware functions were described in the previous section. Now we will look at what
custom functions are invoked at each state. Please refer to Figure 5 for the custom function
usage for the main state machine.

11

Seqil :30 ClearBoard
27 |] {dCusF}
11 {dCusE
N Seqgl:31 BuildMap
28 I I {dCusF}
Secilz29 DrawBoard
1 I L (dCusF}
Seql:25
| |
|}
HumanPlaged
1stI.S|can

Figure 5 Main Machine Custom Functions
A quick count will reveal that there are only 3 custom functions used by the main state machine.

The ClearBoard custom function initializes all of the RELAYS that are involved in both the game
board and any input requests from the human. This is all that happens in Clear Board:

Userlnput = 0O
XSpace = 0
OSpace = 0

clear all relays that the HMI can set
clear map of spaces occupied by X"
clear map of spaces occupied by 0"

The BuildMap CF builds a map of 9 memory locations in DM[]. The state of these 9 DM[]
locations is used by the HMI to draw a human-readable version of the game board. The code for
this custom function is bordering on pretty cryptic:

for i = 0 to 8 " for each of the 9 squares...
if TestBit(XSpace,i)

12

DM[RxCxBase + 1] = 1 " X is In this square
elit TestBit(OSpace,i)

DM[RxCxBase + 1] = 2 " O is In this square
else

DM[RxCxBase + 1] = 0 * This square is available
endif
next

The DrawBoard CF is pure debug and serves only to allow one to play the game without an HMI

and to play the game from the simulator without any actual hardware. It builds the game board.
The following figure is a screen shot of what you can see if you inspect the string variables using
On-line Monitoring. Notice that AS..CS forms the 3x3 game board. DS and ES report the state of
all 5 state machines at various points in time.

|£: ViewVariable - Strings i — x
A u] u]

B$ "

cs &

D 031 000 000 000 o003

E: 005 000 000 000 o003

F#

%

Pglp Pgn Hee | Edt | Close | o | >

Figure 6 Game Play Screen for Debug

2.11.4 Notes on state machine implementation that are worth mentioning
The state transition rules are designed so that the ladder logic scanner will only make a single
state transition per scan of the logic.

The state transition rules are the first block of ladder logic that is scanned. No actions are taken
until the current state is 100% known.

The “hardware” actions always follow the rules section.

Custom functions are the last group of things that get scanned. Most of my custom functions
are only called on the transition to the state. This is simply my style. | can give you a host of
reasons why | decided to do this, but you probably don’t need a lecture.

13

