

USING A TRi SUPER PLC AS
REMOTE I/O FOR ANOTHER

TRI ‘SUPER’ PLC
(ADVANCED-MODBUS)

Revision 1

APPLICATION
NOTE

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 Page i

Copyright Notice and Disclaimer

All rights reserved. No parts of this application note may be reproduced in
any form without the express written permission of TRi.

Triangle Research International, Inc. (TRi) makes no representations or
warranties with respect to the contents hereof. In addition, information
contained herein is subject to change without notice. Every precaution has
been taken in the preparation of this document. Nevertheless, TRi
assumes no responsibility for errors or omissions or any damages resulting
from the use of the information contained in this publication.

MS-DOS and Windows are trademarks of Microsoft Inc.
MODBUS is a trademark of Mobdus.org
All other trademarks belong to their respective owners.

Revision Sheet

Release No. Date Revision Description
Rev. 1 11/20/2012 Updated to reflect current TRi PLC models.

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 Page ii

TABLE OF CONTENTS

Page #

1 OVERVIEW 1-1
2 REMOTE I/O 2-1

2.1 Introduction ...2-1

2.2 The Physical Network...2-1

2.3 Mapping I/O..2-1
2.3.1 Introduction..2-1
2.3.2 Mapping Inputs from the ‘SUPER’ PLC ..2-1
2.3.3 Mapping Memory from the Master PLC ..2-2
2.3.4 Network communication..2-2

3 SERIAL COMMUNICATIONS 3-1
3.1 Introduction ...3-1
3.2 RS485 ...3-1

3.2.1 Background ...3-1
3.2.2 Connections ..3-1

3.3 Auto485 ..3-2

3.4 MODBUS ..3-3
3.4.1 Introduction..3-3
3.4.2 MODBUS RTU ..3-4
3.4.3 MODBUS ASCII ..3-4

4 THE SAMPLE PROGRAM 4-1
4.1 How It Works ...4-1

4.1.1 Basics..4-1
4.1.2 Custom function #1: “I_O_Map” ..4-2
4.1.3 Custom function #4: “Update_IN”..4-3
4.1.4 Custom function #5: “Main” ...4-3
4.1.5 Custom function #4: “Update_OUT”..4-4

4.2 How To Use It ..4-5

5 LINKS 5-1
5.1 SERIAL COMMUNICATIONS ..5-1

5.1.1 Auto485 ...5-1
5.1.2 MODBUS...5-1

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 1-1

1 OVERVIEW

This application note explains how to go about using the TRi ‘Super’ PLC (Nano-10, FMD88-10,
FMD1616-10, F1616-BA, F2424) as Remote I/O for other ‘Super’ PLCs using the MODBUS protocol to
communicate. This could be useful if the system needs to have its I/O separate from the user interface,
or if the systems I/O is spread out with one user access point or one control brain.

Using the MODBUS communication protocol will allow the PLCs to talk to other devices with MODBUS
capability such as touch screens, printers, barcode scanners, and many other devices. Also, it will allow
the system (master PLC, slave PLCs, and MODBUS devices) to be controlled and monitored with SCADA
software and other software similar to SCADA.

This application note covers mapping I/O from one PLC to another, as well as serial communications
using an RS485 connected network and the MODBUS protocol. A sample program that demonstrates
these topics will be included. The sample program will be generic, with the intention that it can be
modified for different applications.

NOTE:
This application note will specifically describe a remote I/O system where the master PLC is a FMD1616-
10 and the slave PLCs are FMD888-10’s. However, please note that the master PLC could be any
‘Super’ PLC depending on personal requirements and the slave PLCs could be either FMD888-10’s or
FMD1616-10’s without changing the sample program. With some minor changes, ‘Super’ PLCs with more
than 16 I/O could be used as slaves. Also, this application note will discuss the network configuration as
using one FMD888-10 PLC as a slave; however, the sample program is programmed to have two slave
FMD SERIES and is expandable to up to 255 ‘Super’ PLC slaves (256 PLCs including the master).

Twisted Pair Cable Master Slave_1
Up to 255
Slaves

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 2-1

2 REMOTE I/O

2.1 Introduction

Using remote I/O is a good way to collect data from multiple areas and send the data back to a central
station through an RS485 network for interpretation and manipulation. Using remote I/O, data can be
sent long distances over an RS485 network (1200m) without risking data loss.

The main parts to a remote I/O setup are:

1. The physical network
2. I/O mapping
3. Network communication

2.2 The Physical Network

The network involved here contains a FMD88-10 as the remote I/O (slave) and a FMD1616-10 as the
central brain (master). This is a simple 2 device network to show how remote I/O works; however, this can
be expanded to include multiple TRi ‘Super’ PLCs as remote I/O (up to 256 PLC’s can be connected on
one network). The Serial Communications section shows how to wire the RS485 network.

2.3 Mapping I/O

2.3.1 Introduction

Mapping I/O is useful for building a gateway that will allow data to move through a network. I/O mapping
is always programmed into the master PLC; the slave(s) have no idea where the data they collect is
going. The slave(s) only respond to commands sent from the master, which is either to send input status
or to update the status of a variable or group of variables.

2.3.2 Mapping Inputs from the ‘SUPER’ PLC

There are many possible ways to map I/O from one device to another. The way I am about to describe is
the method that I used in the sample program included in this application note. It is just one possibility
and may not be the best way in every situation.

Inputs from the FMD88-10 PLCs can be mapped to the internal DM[] memory locations in the master
FMD1616-10 PLC. The FMD88-10 PLC has 8 digital inputs and all TRi ‘Super’ PLCs have 4000 16-bit
DM[] memory locations. First the inputs from the slave FMD88-10 are mapped to the first 8 relays of the
master FMD1616-10; they are then compared to the value in the devices specific DM[] location. If the
value is different then the value in the DM[] location is updated with the new input status. The first 16
relays can be accessed as a group from the system variable RELAY[1], which will contain the states of
the first 16 relays. Even though there are only 8 bits being mapped from the FMD88-10, all 16 bits of
RELAY[1] will be written over. This is so that the FMD88-10 and the FMD1616-10 can be used
interchangeably as slaves without changing the programming.

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 2-2

For example, if device #2 (actually the first slave, id = 02) had all its inputs off the last time its status was
checked and this time all of its inputs were on, then the value of the system variable RELAY[1] will be
decimal 255 (binary 0000000011111111) and the value of DM[3488 + 2] will be decimal 0 (binary
0000000000000000). The value in memory location DM[3488 + 2] will then be updated to decimal 255
(binary 0000000011111111). An example of the code that does this is shown below.

IF DM[3488 + I] <> RELAY[1]

DM[3488 +I] = RELAY[1] 'assign new output status to old if changed
CALL Main 'func. to control individual devices based on input status

ENDIF

Code taken from sample program: “RemoteIO_FMD”, Custom function #1: “I_O_Map”

The sample program will cycle through the number of devices that was selected in the program
initialization. For each device, the same system variable RELAY[1] will be used as temporary storage for
the current input status.

2.3.3 Mapping Memory from the Master PLC

Mapping memory from the master FMD1616-10 PLC to the outputs of the slave FMD88-10 PLC is very
similar to mapping inputs from the slave FMD88-10 PLC to the memory of the master FMD1616-10 PLC.
Again, there are many different ways to go about this but I am using the same method I used in the
sample program provided with this application note.

In the previous section “Mapping Inputs from the ‘SUPER’ PLC”, the system variable RELAY[1] was used
as a temporary variable to hold the current devices input status. The system variable RELAY[2] is used
the same way, as a temporary variable for the current devices output status. From the temporary
variable, RELAY[2], the output status of the slave is transferred to the masters DM[] memory location
DM[3743 + I], which is specific to the current slave device. The data is then transferred to the current
slave PLC using WRITEMODBUS(). Even though there are only 8 bits being mapped from the
FMD1616-10, all 16 bits of RELAY[2] will be written over. This is so that the FMD88-10 and the
FMD1616-10 can be used interchangeably as slaves without changing the programming.

For example, if device #2 (actually the first slave, id = 02) had all its outputs off the last time its status was
checked and this time all of its outputs were on, then the value of the system variable RELAY[2] will be
decimal 256 (binary 0000000011111111) and the value of DM[3743 + 2] will be decimal 0 (binary
0000000000000000). The value in memory location DM[3743 + 2] will then be updated to decimal 256
(binary 0000000011111111). An example of the code that does this is shown below.

IF DM[3743 + I] <> RELAY[2]

DM[3743 +I] = RELAY[2] 'assign new output status to old if changed
CALL Update_OUT 'function to write outputs of current device

ENDIF

Code taken from sample program: “RemoteIO_FMD”, Custom function #1: “I_O_Map”

2.3.4 Network communication

TRi ‘Super’ PLCs support a few different protocols, but the most common and most powerful protocol
supported is the MODBUS protocol. Both MODBUS ASCII and RTU are supported; however, this
application note focuses on MODBUS ASCII. For more information on MODBUS see the MODBUS

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 2-3

section of Serial Communications. There are some BASIC functions that come with the I-Trilogi software
that allow the PLC to talk to other devices in MODBUS quit easily.

There are 2 functions that are used in the sample program:

1. A function to read the data from the slave – READMODBUS(ch, deviceID, address)
2. A function to write data to the slave – WRITEMODBUS ch, deviceID, address, data

The first command, READMODBUS, is used read the input status of the first 16 inputs of device #I. The
“ch” part of the command is the input channel to be read. Each input channel includes 16 inputs. Channel
0 (“00”) includes inputs 1 to 16 and channel 1 (“01”) includes inputs 17 to 32 and so on. Since the
FMD88-10 only has 8 inputs total, only one input channel can be read – channel 0. An example of the
code to read inputs is listed below. Figure 1 shows a more detailed structure of the READMODBUS
function.

RELAY[1] = READMODBUS(3, I, 0) 'send readmodbus() command to com3 (RS485) to
 ‘read inputs of device I
Code taken from sample program: “RemoteIO_FMD”, Custom function #3: “Update_IN”

Command READMODBUS (ch, DeviceID, address)

 {* Applicable only to M+ PLC models}

Purpose Automatically query a MODBUS ASCII device and return the 16-bit
register data using the MODBUS ASCII protocol. The communication
baud rate is the default baud rate of that COMM unless it has been
changed by the SETBAUD command.

ch - PLC COMM port number (1-8)
DeviceID - device ID of the MODBUS device (1 to 255)
address - zero-offset address of the holding register in the MODBUS
device.

Examples relay [3] = READMODBUS (3, 5, 101)

Comments: The relay will contain the 16-bit data obtained from the MODBUS device
with ID = 05 and from register offset address 101 (in MODBUS term this
refer to the #40102 holding register) . Reading it into the relay[] channel
allows bit level manipulation by ladder logic. It can of course also be read
into any data memory. The command automatically checks the response
string received from the slave device for the correct LRC and the slave
address. The status of the operation can be checked in the user program by
executing the STATUS(2) function, which will return a ‘0’ if there is any
error or if the slave device is not present.

See Also WRITEMODBUS, STATUS(2), NETCMD$()

Figure 1: ReadModbus Command

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 2-4

The second command, WRITEMODBUS, is very much like READMODBUS except that data is being
written to output channel 0. The data is the value of DM[3743 + I]. An example of the code to write
outputs is listed below. Figure 2 shows a more detailed structure of the WRITEMODBUS function.

WRITEMODBUS 3, I, 16, RELAY[2] 'send writemodbus()command to com3 (RS485)

to ‘write contents of dm[3743 + I] to outputs of
M-‘Series device I

Code taken from sample program: “RemoteIO_FMD”, Custom function #4: “Update_OUT”

Command WRITEMODBUS ch, DeviceID, address, data

 {* Applicable only to M+ PLC models}

Purpose Automatically write the 16-bit data to a MODBUS ASCII device using the MODBUS
ASCII protocol. The communication baud rate is the default baud rate of that COMM
port unless it has been changed by the SETBAUD command.

ch - PLC COMM port number (1-8)
DeviceID - Device ID of the MODBUS device (1 to
255)
address - Zero-offset address of the holding
register in the MODBUS device.
data - the 16-bit data to be written to the
MODBUS device

Examples WRITEMODBUS 3, 8, 1000, 1234

Comments: The data 1234 will be written to the MODBUS device with ID=08 at the holding
register offset address 1000 (in MODBUS convention this refer to holding register
#41001). The command automatically checks the response string received from the
slave device for the correct LRC and the slave address. The status of the operation
can be checked in the user program by executing the STATUS(2) function, which
will return a ‘0’ if there is any error or if the slave device is not present.

See Also READMODBUS(), STATUS(2), NETCMD$()

Figure 2: WriteModbus Command

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 3-1

3 SERIAL COMMUNICATIONS

3.1 Introduction

There are two types of physical serial communication on TRi ‘Super’ PLCs; one is RS232, and the other
is RS485. The only exception is that the Nano-10 only has an RS485 port. RS232 is used for one-to-one
communication, and RS485 is used for one-to-many communication; however, it can be used for one-to-
one communication as well. RS485 will be discussed in this application note.

Communication will be discussed in terms of physical connections, programming, and protocols.

3.2 RS485

3.2.1 Background

RS485 is an electrical standard, and it is not a communication protocol. RS485 is used for one-to-many
communication; however, it can be used for one-to-one communication as well. Due to its method of
signal transfer, devices can send data distances of up to 1200m.

RS485 has two different wire systems: full duplex and half duplex. Full duplex uses 4 wires and half
duplex uses 2 wires. All Tri PLC’s use the more common half duplex system. Half duplex has a +ve wire
and –ve wire. The logic state of a signal is determined by the voltage of the +ve wire with respect to the
voltage of the –ve wire.

• A logic 1 is when the +ve wire is > 200mV wrt the –ve wire
• A logic 0 is when the –ve wire is > 200mV wrt the +ve wire

3.2.2 Connections

All ‘Super’ PLC’s have a blue screw terminal for RS485 connections. The terminal has connections for the
+ve wire and the –ve wire. Between devices the +ve wire goes to the +ve wire and the –ve wire goes to
the –ve wire.

All ‘Super’ PLCs have physical connections for both RS232 and RS485 (except the Nano-10). The +ve
wire for RS485 is pin 5 of the DB9 connector and the –ve wire is pin 2. An example of an RS485 network
with TRi ‘Super’ PLCs is shown below in Figure 3 – RS485 Network. A more detailed explanation of the
connection is shown below Figure 3.

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 3-2

Figure 3 - RS485 Network

NOTE:
If the devices being connected are using power supplies with different commons then the commons will
have to be connected to avoid signal Interference. This can be done by connecting a 3rd wire to power
supply common of every device or if twisted pair wiring is used, then the shielding can be unraveled and
connected to power supply common at every device.

The built-in RS-485 interface allows the TRi ‘Super’ controllers to be networked together using very low
cost twisted-pair cables. Standard RS-485 allows up to 256 devices (including the host computer node)
to be connected together. This works using a 1/8-power RS485 driver such as the 75HVD3082. The
twisted-pair cable goes from node to node in a daisy chain fashion and should be terminated by a
120ohm resistor as shown above.

Note that the two wires are not interchangeable so they must be wired the same way to each controller.
The maximum wire length should not be more than 1200 meters (4000 feet). RS-485 uses balanced or
differential drivers and receivers, this means that the logic state of the transmitted signal depends on the
differential voltage between the two wires and not on the voltage with respect to a common ground. As
there will be times when no transmitters are active (which leaves the wires in "floating" state), it is a good
practice to ensure that the RS-485 receivers will indicate to the CPUs that there is no data to receive. In
order to do this, we should hold the twisted pair in the logic '1' state by applying a differential bias to the
lines using a pair of 560W to 1KW biasing resistors connected to a +9V (at least +5V) and 0V supply as
shown in Figure 3. Otherwise, random noise on the pair could be falsely interpreted as data. The two
biasing resistors are necessary to ensure robust data communication in actual applications. Some RS485
converters may already have biasing built-in so the biasing resistors may not be needed. However, if the
master is a TRi ‘Super’ PLC then you should use the biasing resistor to fix the logic states to a known
state. Although in lab environment the PLCs may be able to communicate without the biasing resistors,
their use is strongly recommended for industrial applications.

3.3 Auto485

The Auto485 is a device that will convert RS232 to RS485 and vice versa. For this application note, the
Auto485 is used to connect a pc to the RS485 network through the pc’s RS232 serial port.

For more information on the Auto485, go to the “Links” section.

Super PLC
(Master)

Super PLC

(Slave)

Super PLC

(Slave)

Super PLC

(Slave)

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 3-3

3.4 MODBUS

3.4.1 Introduction

This is a protocol that many devices use to communicate in industry. It is used for all kinds of
communication including Serial and Ethernet. It is a powerful protocol that is open source and free to be
used by anyone as long as minimum requirements are met so that there is always one basic standard
and not 1000’s.

MODBUS employs a series of functions that allow devices to read and write data to and from other
devices through various locations such as I/O, memory, and various internal registers. MODBUS devices
can be configured as a MODBUS slave or as a MODBUS master and slave depending on the device. In
order to be a MODBUS master, the device must be able to send MODBUS commands, using at least the
basic set of functions, to other devices. Figure 4 shows a table of MODBUS functions, where
conformance class 0 is the base functions that any device must support to be MODBUS capable. The
TRi ‘Super’ PLCs can be used as a MODBUS master and they support the highlighted functions in Figure
4:

Figure 4 – Modbus Functions

The general Modbus frame consists of 4 different parts.
1. The address block – PLC id
2. The function code – HEX code from Figure 4
3. Data – location of data to read/write + how many registers to read/write if a multi read/write function is

used. If a write function is used then the data to write is included.
4. Error check – either CRC or LRC

Figure 5 below shows a general Modbus frame.

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 3-4

Figure 5 – Modbus Frame

The TRi ‘Super’ PLCs support other protocols such as the native Host Link Commands, but only the
‘Super’ PLCs support MODBUS. There are two formats for MODBUS: MODBUS RTU, and MODBUS
ASCII. The following explanation of MODBUS RTU, and MODBUS ASCII only goes into a little detail. If
more detail is required, the information can be found through the “Links” section.

3.4.2 MODBUS RTU

Modbus RTU is the same as Modbus ASCII except for a few things.

1. Binary data is sent out directly rather than being converted into characters
2. The start of a Modbus frame is a 3.5 character gap in transmission
3. The end of a Modbus frame is a 3.5 character gap in transmission
4. Errors are checked using a 16 bit CRC (Cyclic Redundancy Check)

A Modbus RTU command/response block is shown below in Figure 6.

Figure 6 – Modbus RTU Command/Response Block

3.4.3 MODBUS ASCII

Modbus ASCII is the same as Modbus RTU except for a few things.
1. Each byte is sent out in two ASCII characters
2. The start of a Modbus frame is the “:” character (colon)
3. The end of a Modbus frame is a CR + LF (Carriage Return + Line Feed)
4. Errors are checked using an LRC (Longitudinal Redundancy Check)

A Modbus ASCII command/response block is shown below in Figure 7.

Figure 7 – Modbus ASCII Command/Response Block

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 4-1

4 THE SAMPLE PROGRAM

4.1 How It Works

4.1.1 Basics

The sample program can be programmed into and operated from any TRi ‘Super’ PLC. It uses ladder
logic and basic programming combined to control any device that has an RS485 port and is capable of
communicating in the MODBUS ASCII protocol. In this case the “control” actually means mapping I/O to
and from the master and slave PLCs. In this application note the slave device of focus is the FMD88-10;
however, any TRi ‘Super’ PLC can be controlled using the sample program.

The ladder logic portion of the program is actually quite simple. It involves 2 contacts: 1st Scan and
Clk:0.1s and 2 custom functions: INIT and I_O_Map. Listed below, in Figure 8 – Ladder Logic, is a
picture of the ladder logic screen. In the program there are comments included above the ladder circuits.

Figure 8 – Ladder Logic

The contact 1st Scan is a special bit that is activated once on every power up or restart of the PLC. It is
intended to activate initialization functions and coils. In this case, 1st Scan activates the INIT custom
function that is used for initializing the baud rate in the master PLC, initializing variables used in the
custom functions, and for initializing slave configurations and the LCD display. An example of the code
for the INIT function is below.

'This function initializes the master and slave device settings.
'In order to change the number of devices in the network from the default of 3,
'D must be set to the new number of devices.

setbaud 3,6 'Set baud rate on com3 to 38400

I = 2 'Initialize id # to 2 (device id)
D = 3 'Total number of devices (including master)
'---
'Slave Device 1 Initialization

SETLCD 1,1, "INPUT 1 OF DEV 2 IS:" 'Initialize display for device 2
SETLCD 2,17, "OFF"
'---
'Slave Device 2 Initialization

SETLCD 3,1, "INPUT 1 OF DEV 3 IS:" 'Initialize display for device 3

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 4-2

SETLCD 4,17, "OFF"
Code taken from sample program: “RemoteIO_FMD”, Custom function #2: “INIT”

The second contact, Clk:0.1s, is another special bit that is activated once every 0.1 seconds. This
activates the I_O_Map custom function that runs the code to everything, including: Mapping I/O,
communicating with the slaves, displaying to the LCD. An example of the code for the I_O_Map function
is below.

'This function cycles through all of the remote devices from id 2 to D.
'It reads the input status of each device and runs the code that is specific to that device

IF I > D 'Reset device id when it reaches last device
 I = 2
ENDIF

CALL Update_IN 'Function to read inputs of current device

IF DM[3488 + I] <> RELAY[1]
 DM[3488 + I] = RELAY[1] 'Assign new input status to old if changed
 CALL Main 'Function to control individual devices based
on
 ‘input status
ENDIF

IF DM[3743 + I] <> RELAY[2]
 DM[3743 +I] = RELAY[2] 'Assign new output status to old if changed
 CALL Update_OUT 'Function to write outputs of current device
ENDIF

IF I = D
 RELAY[2] = DM[3743 + 2] 'Reset system variable for first device
ELSE
 RELAY[2] = DM[3743 + I + 1] 'Reset system variable for next device
ENDIF

I = I + 1 'Next device

Code taken from sample program: “RemoteIO_FMD”, Custom function #1: “I_O_Map”

4.1.2 Custom function #1: “I_O_Map”

The custom function I_O_Map is the top level of the program; everything is run through this function in
one program cycle. The order of events of I_O_Map is shown below in numerical order.
1. It starts by checking the current device ID (variable I) and resetting it if it is past the ID limit, which is

the number of devices connected (variable D) defined by the user in custom function INIT.
2. It will then call the custom function Update_IN, which will read the input status of the current slave

device (variable I) and store it into system variable RELAY[1]. (Update_IN is covered in the next
section.)

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 4-3

3. It will then compare the new input status stored in RELAY[1] to the old input status stored in DM[3488
+ I]. (The number 3488 is an offset used so that the last 510 spots of DM memory are used for I/O
mapping, which frees up the rest of DM memory for other program use)

4. If the new status is different from the old status then steps 4. a) and 4. b) will be executed before
moving to step 5, otherwise 4. a) and 4. b) are skipped.
a) DM[3488 + I] will be updated with the new input status.
b) The custom function Main will be called. (More detail on Main is in a later section)

5. Next, the new output status stored in RELAY[2] is compared to the old output status stored in
DM[3743 + I]. If the new and old output status is different then steps 5. a) and 5. b) are executed
before moving on to step 6, otherwise steps 5. a) and 5. b) are skipped.
a) DM[3743 + I] will be updated with the new output status.
b) The custom function Update_OUT will be called. (More detail on Update_OUT is in a later

section)
6. The old output status of the next device is loaded into system variable RELAY[2] to prepare for the

next cycle. If the current ID is the value of D (last slave device) the old output status of the first slave
device is stored in RELAY[2].

7. The device ID (variable I) is incremented by 1.

4.1.3 Custom function #4: “Update_IN”

Update_IN will read the input status and store the status in RELAY[1]. The details of how this is done are
shown below.
1. READMODBUS command is sent with 3 parameters: com port, device #, and MODBUS address
2. The value returned by READMODBUS is stored in system variable RELAY[1].
3. Error checking – check for a READMODBUS error using the STATUS(2) command

An example of the code is shown below.

'This function sends a request to read slave (‘Super’ # I) inputs
'The input status is stored in RELAY[1]

RELAY[1] = READMODBUS(3, I, 0) 'send readmodbus()command to com3
(RS485) to read
 ‘inputs of device I

IF STATUS(2) = 0 'check for readmodus error
 '*** add error response code here ***
ENDIF

Code taken from sample program: “RemoteIO_FMD”, Custom function #3: “Update_IN”

4.1.4 Custom function #5: “Main”

Main is the function that controls actions and events based on the input status. Each device can have its
own section of code for its own actions. Below is the code from the Main function.

The code below is just an example of what can be done. It uses the LCD to display whether Input 1 from
device 2 (first slave device) is on or off. Also, if input 4 is on for device 2 then the first 16 outputs are
turned on for device 2. The same code is repeated for device 3; however, it is not necessary to have the
same code for each device. If you had the same code for each device it could be combined to save code
space.

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 4-4

'This function performs tasks based on the input conditions of the remote I/O
'This is as simple example of how an output or multiple outputs can be manipulated based on a
devices input status

'--
'Device 2 (Slave 1)

IF I = 2
 IF TESTIO (Sl_in1) 'Input 1 of device 2 is on
 SETLCD 2,17, "ON "
 ELSE 'Input 1 of device 2 is off
 SETLCD 2,17, "OFF"
 ENDIF

 IF TESTIO (Sl_in4) 'Input 4 of device 2 is on
 RELAY[2] = &HFF 'Turn on first 16 outputs of device 2
 ELSE 'Input 1 of device 2 is on
 RELAY[2] = 0 'Turn off first 16 outputs of device 2
 ENDIF

ENDIF
'--
'Device 3 (Slave 2)
IF I = 3
 TESTIO (Sl_in1) 'Input 1 of device 3 is on
 SETLCD 4,17, "ON "
 ELSE 'Input 1 of device 3 is off
 SETLCD 4,17, "OFF"
 ENDIF

 IF TESTIO (Sl_in4) 'Input 4 of device 3 is on
 RELAY[2] = &HFF 'Turn on first 16 outputs of device 3
 ELSE 'Input 1 of device 3 is on
 RELAY[2] = 0 'Turn off first 16 outputs of device 3
 ENDIF
ENDIF

Code taken from sample program: “RemoteIO_FMD”, Custom function #5: “Main”

4.1.5 Custom function #4: “Update_OUT”

This function is only called if the current output status is different from the previous output status. The
function itself is quite simple. It involves 2 steps.
1. Use WRITEMODBUS to send the new output status to the current device via COM3 (RS485)
2. Error checking – check if there is a WRITEMODBUS error using STATUS(2)

The code for custom function Update_OUT is shown below.

'This function writes DM[3743 + I] locations of Master to outputs 1-16 of ‘Super’ device I
'--

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 4-5

WRITEMODBUS 3, I, 16, RELAY[2] 'send writemodbus()command to com3 (RS485) to
 ‘write contents of dm[3743 + I]
 'to outputs of ‘Super’ device I
IF STATUS(2) = 0 'check for writemodus error
 '*** add error response code here ***
ENDIF

Code taken from sample program: “RemoteIO_FMD”, Custom function #4: “Update_OUT”

4.2 How To Use It

In order to use this sample program, a number of steps must be taken:

1. The ID of each slave device must be set to the correct number, starting with 2 and increasing by 1 up

to a maximum of 256. This can be done by connecting each slave device to a pc, with I-Trilogi, via
RS232 and changing the ID with TLServer. The new ID will be permanent in the PLC until it’s reset
again. The master PLC can have an ID of 00 or 01.

2. Next the physical network must be set up. The network should include the master PLC connected to

the slaves through RS485; also, each device will need power and if separate power supplies are
being used then all of the commons must be connected together. Specific instructions for wiring can
be found in the “Serial Communications” section under “RS485”.

3. Now the program needs to be modified if it is not already. Modifications should to be made to the INIT

function so that the variable D is set to the correct value (total number of devices including master).
Also, Main may need to be modified depending on the use of the sample program.

4. The program can now be downloaded into the master PLC and then run after a restart.

SUPER PLC REMOTE I/O APPLICATION NOTE (ADVANCED)

 5-1

5 LINKS

The links will be organized by section according to the table of contents so that they are easy to find.

5.1 SERIAL COMMUNICATIONS

5.1.1 Auto485

For more information on the Auto485, click here.

5.1.2 MODBUS

For more information on MODBUS communication related to Tri PLCs, click here.
You will be brought to chapter 5 (MODBUS /OMRON Protocols Support) of the operation
manual for the FMD Series. In chapter 5 you will find a detailed explanation of the
MODBUS format along with mapping tables.

To view the MODBUS spec sheet from modbus.org, click here.
You will be brought to the MODBUS spec sheet that contains information on all aspects
of MODBUS from the MODBUS website: www.modbus.org

