
E10 REMOTE I/O APPLICATION NOTE

 Page i

USING THE E10+ PLC AS
REMOTE I/O FOR THE

TRI ‘SUPER’ PLC

Revision 1

APPLICATION
NOTE

E10 REMOTE I/O APPLICATION NOTE

 Page ii

Copyright Notice and Disclaimer

All rights reserved. No parts of this application note may be reproduced in
any form without the express written permission of TRi.

Triangle Research International, Inc. (TRi) makes no representations or
warranties with respect to the contents hereof. In addition, information
contained herein is subject to change without notice. Every precaution has
been taken in the preparation of this document. Nevertheless, TRi
assumes no responsibility for errors or omissions or any damages resulting
from the use of the information contained in this publication.

MS-DOS and Windows are trademarks of Microsoft Inc.
MODBUS is a trademark of Mobdus.org
All other trademarks belong to their respective owners.

Revision Sheet

Release No. Date Revision Description
Rev. 1 11/20/2012 Updated to reflect current TRi PLC models.

E10 REMOTE I/O APPLICATION NOTE

 Page iii

TABLE OF CONTENTS

Page #

1 OVERVIEW 4
2 REMOTE I/O 2-1

2.1 Introduction ...2-1

2.2 The Physical Network...2-1

2.3 Mapping I/O..2-1
2.3.1 Introduction..2-1
2.3.2 Mapping Inputs from the E10+..2-1
2.3.3 Mapping Memory from the Master ..2-2
2.3.4 Network communication..2-3

3 SERIAL COMMUNICATIONS 3-1
3.1 Introduction ...3-1
3.2 RS485 ...3-1

3.2.1 Background ...3-1
3.2.2 Connections ..3-1

3.3 Auto485 ..3-2

3.4 Host Link Commands ...3-2
3.4.1 Point to Point ...3-2
3.4.2 Multi Point..3-3

4 THE SAMPLE PROGRAM 4-1
4.1 How It Works ...4-1

4.1.1 Basics..4-1
4.1.2 Custom function #2: “Update_IN”..4-2
4.1.3 Custom function #4: “Empty_Func”...4-3
4.1.4 Relay Coil: “SL1_O4” ..4-3
4.1.5 Up Counter: “Count_SL2_O1”...4-3
4.1.6 Custom function #3: “Update_OUT”..4-3

4.2 How To Use It ..4-5

5 LINKS 5-1
5.1 Remote I/O ...5-1

5.1.1 The Physical Network..5-1

5.2 SERIAL COMMUNICATIONS ..5-1
5.2.1 Auto485 ...5-1
5.2.2 Host Link Commands..5-1

E10 REMOTE I/O APPLICATION NOTE

 Page iv

1 OVERVIEW

This application note explains how to go about using the E10+ as Remote I/O for the TRi ‘Super’ PLC
(Nano-10, FMD88-10, FMD1616-10, F1616-BA, F2424). This could be useful if the system needs to
have its I/O separate from the user interface, or if the systems I/O is spread out with one user access
point or one control brain.

It will cover mapping I/O from one PLC to another, as well as serial communications using an RS485
connected network. A sample program that demonstrates these topics will be included. The sample
program will be generic, with the intention that it can be modified for different applications.
NOTE: This application will discuss the network configuration as using one E10+ PLC as a slave;
however, the sample program is programmed to have two slave E10+ PLCs and is expandable to up to 4
E10+ slaves (5 PLCs including the master).

E10-NPN+ E10-Relay+

Twisted Pair Cable Rs485 Up to 255
Slave Devices

 1-1

E10 REMOTE I/O APPLICATION NOTE

 1

2 REMOTE I/O

2.1 Introduction

Using remote I/O is a good way to collect data
from multiple areas and send the data back to a
central station through an RS485 network for
interpretation and manipulation. Using remote
I/O, data can be sent long distances over an
RS485 network (1200m) without risking data
loss.

The main parts to a remote I/O setup are:

1. The physical network
2. I/O mapping
3. Network communication

2.2 The Physical Network

The network involved here contains an E10+
(npn) as the remote I/O (slave) and a FMD1616-
10 as the central brain (master). This is a simple
2 device network to show how remote I/O works;
however, this can be expanded to include
multiple E10+ PLC’s as remote I/O (up to 5
PLC’s can be connected on one network).

The Serial Communications section shows how
to wire the RS485 network. For even more
information, see the “Links” section.

2.3 Mapping I/O

2.3.1 Introduction

Mapping I/O is useful for building a gateway that
will allow data to move through a network. I/O
mapping is always programmed into the master
PLC; the slave(s) have no idea where the data
they collect is going. The slave(s) only respond
to commands sent from the master, which is
either to send input status or to update output
status.

There are many possible ways to map I/O from
one device to another. The way I am about to
describe is the method that I used in the sample

program included in this application note. It is
just one possibility and may not be the best way
in every situation.

There are 256 internal Relay contacts that are
grouped into 16 chunks named RELAY[1] -
RELAY[16]. These chunks are system variables
and are equivalent to arrays. Each RELAY
variable is a 16 bit word, each bit represents a
contact. If one of these contacts is activated,
either through ladder logic or code, then the bit
in the RELAY variable that the contact
represents will become a 1.

For example, if Relay contact #1 was activated
from it's normally deactivated state and all other
Relay contacts were deactivated, then the value
of RELAY[1] would change from 0 to
0000000000000001 binary, 1 decimal, and 0001
hex. Relay contact #1 corresponds to the first bit
of the RELAY[1] array (system variable). The
reason for that explanation was to help with the
following explanation of I/O mapping.

2.3.2 Mapping Inputs from the E10+

The following line of code is used to map inputs
from the slave PLCs to the master PLC.

RELAY[I] = (RELAY[I] & &HFFC0) |
(HEXVAL(I$) & &H003F)

Code taken from sample program:
“RemoteIO_E10 basic”, Custom function #2:
“Update_IN”

The code to map inputs, from above, will be split
into pieces and each piece will be explained
individually. Then the code will be put back
together and explained as a whole.

RELAY[I]
This code refers to the inputs and outputs of the
slave devices. The variable I represents the ID
of the current slave device. Since the id of the
first slave device is 2, the minimum value of I is
2. Each 16 bit/contact RELAY[] array is used to
both map inputs of a slave device to the Master
PLC and to map outputs of a slave device to the
Master PLC. RELAY[2] - RELAY[5] are
designated for the slave devices.

RELAY[I] & &HFFC0

2-1

E10 REMOTE I/O APPLICATION NOTE

 2

Since both the inputs and outputs of each slave
device are mapped to a single RELAY[] location,
it is necessary to mask the RELAY[] variable.
The mask &HFFC0 is used to preserve the non
input bits/contacts of RELAY[I] since only the
inputs are being updated inside the “Update_IN”
function.

HEXVAL(I$) & &H003F
I$ is a string that contains the input status of the
current slave device. Its contents come from the
NETCMD$ command to read the inputs of the
current slave device. HEXVAL(I$) just converts
the string to a number in HEX form. It is masked
with the opposite HEX number as the above
mask so that only the first 6 bits, which
correspond to all 6 inputs, are extracted.

RELAY[I] = (RELAY[I] & &HFFC0) |
(HEXVAL(I$) & &H003F)
This whole command will preserve all the bits
except the inputs in RELAY[I] and then store
only the inputs from the HEX value of I$.

2.3.3 Mapping Memory from the
Master

The following 3 lines of code are used to map
outputs from the master PLC to the slave PLCs.

DM[3995 +I] = RELAY[I] & &H0F00

DM[3900] = RELAY[I] & &H0F00

FOR X = 1 TO 8

RSHIFT DM[3900],1
NEXT

Code taken from sample program:
“RemoteIO_E10 basic”, Custom function #3:
“Update_OUT”

The code to map outputs, from above, will be
split into pieces and each piece will be explained
individually. Then the code will be put back
together and explained as a whole.

DM[3995 + I]
This code also refers to the outputs of the slave
devices. Each DM[] location is 16 bits just like
each RELAY[] location. Each bit represents an
output of a slave device just like each relay
contact represents an input/output of a slave
device.

RELAY[I] & &H0F00
This code refers to the outputs of the slave
devices. The mask &H0F00 is to ensure that
only the 4 outputs are extracted from the
RELAY[I] variable.

DM[3995 +I] = RELAY[I] & &H0F00
The point of this code is to save a copy of each
slave devices output status so that it may be
used in a comparison. This is used in the
custom function "Update_OUT" as a way to
save time. What I mean is that it takes time to
send commands through the serial port such as
the command to update the outputs of the slave
devices. If the output status of a device hasn't
changed then there is no point in sending the
command to update its outputs. So everytime
Update_OUT is executed, the current value of
the output status (RELAY[I] & &H0F00) for the
current slave device is compared to the previous
value of the output status (DM[3995 + I]) for the
current slave device. If these values are different
then the devices output status is updated and
the value in DM[3995 + I] is set to the new
output status that is in RELAY[I].

DM[3900] = RELAY[I] & &H0F00
DM[3900] is used as a temporary variable where
the output status of the current slave device is
stored again. Since the output status of the
slave devices is not stored at the beginning of
the RELAY[I] variable, it is necessary to shift the
bits over so that they are in the position of the
first 4 bits (there are 4 ouputs). DM[3900] is
used as the location for the bits to be shifted so
that RELAY[I] isn't effected.

FOR X = 1 TO 8

RSHIFT DM[3900],1
NEXT
This is the code that does the bit shifting
mentioned above. This code will shift DM[3900]
8 bits to the right. Since the outputs start at bit 8,
they need to be shifted 8 bits to the right so that
the first output is the first bit of DM[3900].
Therefore, the code “RSHIFT DM[3900],1” will
be repeated 8 times to complete the bit shift.

For example, if the value of the outputs for a
slave device was 3 decimal (11 binary and 3
HEX), then the value of RELAY[I] & &H0F00
would be 768 decimal or 0000 0011 0000 0000
binary or 0300 HEX. Once the value of
“RELAY[I] & &H0F00” has been placed in
DM[3900], the value of DM[3900] will be the

2-2

E10 REMOTE I/O APPLICATION NOTE

 3

same 768 decimal. After doing "RSHIFT
DM[3900],1" eight times using the FOR loop, the
value of DM[3900] will be 3 decimal, or 11 binary
(14 leading zeros), or 0003 HEX.

2.3.4 Network communication

There are a couple of different ways to send
data or commands from the master to the slave
PLC. The function that I used in the sample
program is the function that I will describe here,
which is the “Netcmd$” function. The “Netcmd$”
function makes communication easy in this case
since we are talking in the native host link
protocol.

The “Netcmd$” command takes 2 parameters;
the COM port that will be used to send out the
command string, and the command string itself.
Netcmd$ will send out the command and store
the response to a string.
The command will look like this:

 A$ = Netcmd$(3, I$)

Where I$ is the command, A$ is the response,
and 3 is the COM port used for data transfer
between the devices.

The “Netcmd$” command will automatically
append the “*” + “CR” (Asterisk and Carriage

Return) components to the end of the command
string that you are sending. Also, it will
automatically calculate the correct FCS (Frame
Check Sequence) and append it to the end of
the command string, right after the “CR”. All that
is left to do is send the “@” + the Header + the
Data in a string and Netcmd$ will take care of
the rest. For more information on formatting
strings for Host Link commands see the Host
Link Commands section of Serial
Communications.

There are 2 different kinds of command strings
that will be sent to the slave PLC using
“Netcmd$”:

1. A command to read the inputs of the
slave (RI) – “@02RI00”

2. A command to write the outputs of the
slave (WO) – “@02WO00xxxx”

The first command, read inputs, will read the
input status of the first 16 inputs of device #2.
The “00” part of the command is the input
channel to be read. Each input channel includes
16 inputs. Channel 0 (“00”) includes inputs 1 to
16 and channel 1 (“01”) includes inputs 17 to 32
and so on. Since the E10+ only has 6 inputs
total, only one input channel can be read –
channel 0. An example of the code to read
inputs is listed below.

G$ = STR$(I, 2) 'Build id part of netcmd string
I$ = "@" + G$ + "RI00" 'Build rest of netcmd string to read inputs of device I
I$ = NETCMD$(3, I$) 'Send command to com3 (RS485)
Code taken from sample program: “RemoteIO_E10”, Custom function #3: “Update_IN”

The second command, write outputs, works
exactly the same as read inputs except that data
is being written to output channel 0. The data is
“xxxx”, which is the value of DM[3900] converted
into a 16 bit Hex string. However, only the least

significant 4 bits are important, as mentioned in
section “1.3.3 Mapping Memory from the
MASTER”, because there are only 4 outputs on
the E10+. An example of the code to write
outputs is listed below.

R$ = HEX$(DM[3900], 2) 'convert dm[3900] (RELAY[I] & &H0F00) location into a string
O$ = "@" + G$ + "WO00" + R$ 'build hostlink command
O$ = NETCMD$(3, O$) 'send host link cmd to write location DM[3900] (RELAY[I] &

&H0F00) of ‘TRi ‘Super’ PLC to outputs 1-4

Code taken from sample program: “RemoteIO_E10”, Custom function #4: “Update_OUT”

2-3

E10 REMOTE I/O APPLICATION NOTE

 1

3 SERIAL
COMMUNICATIONS

3.1 Introduction

There are two types of physical serial
communication on TRi ‘Super’ PLCs; one is
RS232, and the other is RS485. The only
exception is that the Nano-10 only has an
RS485 port. RS232 is used for one-to-one
communication, and RS485 is used for one-to-
many communication; however, it can be used
for one-to-one communication as well. RS485
will be discussed in this application note.

Communication will be discussed in terms of
physical connections, programming, and
protocols.

3.2 RS485

3.2.1 Background

RS485 is an electrical standard, and it is not a
communication protocol. RS485 is used for
one-to-many communication; however, it can be
used for one-to-one communication as well.

Due to its method of signal transfer, devices can
send data distances of up to 1200m.

RS485 has two different wire systems: full
duplex and half duplex. Full duplex uses 4 wires
and half duplex uses 2 wires. All Tri PLC’s use
the more common half duplex system. Half
duplex has a +ve wire and –ve wire. The logic
state of a signal is determined by the voltage of
the +ve wire with respect to the voltage of the –
ve wire.

• A logic 1 is when the +ve wire is >
200mV wrt the –ve wire

• A logic 0 is when the –ve wire is >
200mV wrt the +ve wire

3.2.2 Connections

All ‘Super’ PLC’s have a blue screw terminal for
RS485 connections. The terminal has
connections for the +ve wire and the –ve wire.
Between devices the +ve wire goes to the +ve
wire and the –ve wire goes to the –ve wire.

All E10+ PLC’s only have physical connections
for RS232, but RS485 is jumper selectable. The
+ve wire for RS485 is pin 5 of the DB9
connector and the –ve wire is pin 2. An example
of this is shown below in Figure 1 – RS485
Network. A more detailed explanation of the
connection is shown below Figure 1.

Figure 1 - RS485 Network
NOTE:
If the devices being connected are using power
supplies with different commons then the
commons will have to be connected to avoid

signal interference. This can be done by
connecting a 3rd wire to power supply common
of every device or if twisted pair wiring is used,
then the shielding can be unraveled and

Super PLC
(Master)

3-1

E10 REMOTE I/O APPLICATION NOTE

 2

connected to power supply common at every
device.

The built-in RS-485 interface allows the TRi
‘Super’ controllers to be networked together
using very low cost twisted-pair cables.
Standard RS-485 allows up to 32 controllers
(including the host computer node) to be
networked together. When fitted with 1/8 power
RS485 driver such as the 75HVD3082, up to 5
devices can be connected together. The twisted-
pair cable goes from node to node in a daisy
chain fashion and should be terminated by a
120ohm resistor as shown below.

Note that the two wires are not interchangeable
so they must be wired the same way to each
controller. The maximum wire length should not
be more than 1200 meters (4000 feet). RS-485
uses balanced or differential drivers and
receivers, this means that the logic state of the
transmitted signal depends on the differential
voltage between the two wires and not on the
voltage with respect to a common ground. As
there will be times when no transmitters are
active (which leaves the wires in "floating" state),
it is a good practice to ensure that the RS-485
receivers will indicate to the CPUs that there is
no data to receive. In order to do this, we should
hold the twisted pair in the logic '1' state by
applying a differential bias to the lines using a
pair of 560W to 1KW biasing resistors
connected to a +9V (at least +5V) and 0V supply
as shown in Figure 3-2. Otherwise, random
noise on the pair could be falsely interpreted as
data. The two biasing resistors are necessary to
ensure robust data communication in actual
applications. Some RS485 converters may
already have biasing built-in so the biasing
resistors may not be needed. However, if the
master is a TRi ‘Super’ PLC then you should use
the biasing resistor to fix the logic states to a
known state. Although in lab environment the
PLCs may be able to communicate without the
biasing resistors, their use is strongly
recommended for industrial applications.

3.3 Auto485

The Auto485 is a device that will convert RS232
to RS485 and vice versa. For this application
note, the Auto485 is used to connect a pc to the
RS485 network through the pc’s RS232 serial
port.

For more information on the Auto485, go to the
“Links” section.

3.4 Host Link Commands

This is a protocol used to communicate between
devices. The TRi ‘Super’ supports other
protocols such as MODBUS, but the E10+ only
supports Host Link Commands. Therefore, only
Host Link Commands will be discussed here.
There are two formats for host link commands;
point to point, and multi point. The following
explanation of point-to-point and multi-point only
goes into a little detail. If more detail is required,
the information can be found through the “Links”
section.

3.4.1 Point to Point

Point to point communication is meant for a
network of 2 devices because commands are
sent out with no device id. For an example of
the point-to-point communication process, see
Figure 2 – Point to Point below.

The format for sending data is as follows:

1. The master sends character “ctrl 5”
(ASCII 05) to signal slave that a
command is coming.

2. The slave receives character “ctrl 5”,
sends back a “ctrl 5” character to the
master, and prepares itself for an
incoming command.

3. The master receives the “ctrl 5”
response and sends the command.

4. The slave receives the command and
sends back a response specific to that
command.

5. The master receives the response and
confirms that it is the correct response.

3-2

E10 REMOTE I/O APPLICATION NOTE

 3

Figure 2 - Point to Point

3.4.2 Multi Point

Multipoint communication is for a network of 2 or
more devices, where each device has it’s own
id. For an example of multi-point
communication, see Figure 3 – Multi Point
below. The format for multipoint communication
is as follows:

1. The master sends a command string
containing “@”, a 2 character id “__”, the
2 character header, the data, the 2
character FCS (frame check sequence),
and the “*” character. A carriage return
is automatically appended to the end of
all multipoint commands.

2. All of the slaves receive the command
and check if it contains their specific id.

3. The slave device with the correct id
checks that a valid command was sent.

4. The slave device responds with a
response string containing “@”, its 2
character id, the response, the 2
character FCS (frame check sequence),
and the “*” character. A carriage return
is automatically appended to the end of
all multipoint responses.

5. The master checks that the correct
response has been sent.

Figure 3 - Multi Point

3-3

E10 REMOTE I/O APPLICATION NOTE

 1

4 THE SAMPLE PROGRAM

4.1 How It Works

4.1.1 Basics

The sample program can be programmed into
and operated from any TRi ‘Super’ PLC. It uses
ladder logic and basic programming combined to
control any device that has an RS485 port and is
capable of communicating in the TRI native
protocol (Host Link commands). In this case the
“control” actually means mapping I/O to and
from the master and slave PLCs. In this
application note the device of focus is the E10+;
however, any TRI PLC can be controlled using
the sample program.

The ladder logic portion of the program is
actually quite simple. It involves 6 contacts: 1st
Scan, Clk:0.05s, SL1_in1, SL1_in4, SL2_in1,
and Clk:0.02s and 4 custom functions: INIT,
Update_IN, Empty_Function, and Update_OUT.
Listed below, in Figure 4 – Ladder Logic, is a
picture of the ladder logic screen. In the
program there are comments integrated around
the ladder circuits.

The contact 1st Scan is a special bit that is
activated once on every power up or restart of
the PLC. It is intended to activate initialization
functions and coils. In this case, 1st Scan
activates the INIT custom function that is used
for initializing the baud rate in the master PLC,
initializing variables used in the custom
functions, and for initializing slave
configurations. An example of the code for the
INIT function is below.

The second contact, Clk:0.05s, is another
special bit that is activated once every 0.05
seconds. This activates the Update_IN custom
function that runs the code to update the inputs
and map the slave inputs to the master relay[]
bits. An example of the code for the Update_IN
function is shown in the next section.

The next 3 contacts: SL1_in1, SL1_in4, and
SL2_in1 are relay contacts that are inputs
mapped from the slave PLC. For example,
SL1_in1 corresponds to slave #1 (device#2),
input#1. These 3 relay contacts are not part of
the I/O mapping process, they are simple
examples of how the mapped inputs can be
used as contacts in ladder logic.

The last contact, Clk:0.02s is another clock
signal that has a rising edge every 0.02
seconds. This activates the Update_OUT
custom function that runs the code to update the
outputs and map the master relay bits to the
slave outputs. An example of the code for the
Update_IN function is shown in a later section.

Figure 4 – Ladder Logic

4-1

E10 REMOTE I/O APPLICATION NOTE

 2

'This function initializes the master and slave
device settings.
'In order to change the number of devices in the
network from the default of 3,
'D must be set to the new number of devices.

setbaud 3,3
 'Set baud rate on com3 to 9600

I = 2
 'Initialize id # to 2 (device id)
D = 3
 'Total number of devices (including
master)

Code taken from sample program:
“RemoteIO_E10”, Custom function #1: “INIT”

4.1.2 Custom function #2:
“Update_IN”

Update_IN will read the input status and store
the status in the first 6 bits of RELAY[I]. The
details of how this is done are shown below.

1. The current device number (I) is
checked against the maximum allowed
(D)

2. If “I” exceeds “D” then “I” is reset else “I”
stays the same.

3. The ID string is built
4. The command string with the ID string is

built
5. The command is sent using “Netcmd$”
6. Error checking – check if the response

string is empty
7. Error checking – check if there is a

framing error
8. Error checking – check if there is a

command error
9. Extract input status from response string
10. Store input status in first 6 bits of

RELAY[I].

An example of the code is shown below.

'This function sends a request to read slave (e10 # I) inputs
'The input status is stored in RELAY[1]

IF I > D 'when I (device#) is larger than D (# of devices), reset I to 2 (1st slave)
 I = 2
ENDIF

G$ = STR$(I, 2) 'build id part of netcmd string
I$ = "@" + G$ + "RI00" 'build rest of netcmd string to read inputs of device I
I$ = NETCMD$(3, I$) 'send command to com3 (RS485)

IF STRCMP(I$,"") = 0 'check if string is empty
 '*** add error handling code here ***
ENDIF

IF STRCMP(I$, "@" + G$ + "FE") = 0 'check for framing error
 '*** add error handling code here ***
ENDIF

IF STRCMP(I$, "@" + G$ + "EE") = 0 'check for command error
 '*** add error handling code here ***
ENDIF

I$ = MID$(I$, 6, 2) 'extract hex input value from response string

RELAY[I] = (RELAY[I] & &HFFC0) | 'write inputs 1-6 of e10 device# I to relay bits 1-6 of FMD relay[I].
(HEXVAL(I$) & &H003F) 'preserve relay[I] (only 6 out of 16 bits are used here and 4 bits ‘are for o/ps)
 'mask relay[I] with binary 00111111 to represent 6 out of 8 relays used

Code taken from sample program: “RemoteIO_E10”, Custom function #5: “Update_IN”

4-2

E10 REMOTE I/O APPLICATION NOTE

 3

4.1.3 Custom function #4:
“Empty_Func”

This function is not part of the Remote I/O
process, it is there to show how the mapped
inputs from the slave devices (specifically, slave
device #1) can be used in ladder logic. In this
case, the first input on the first slave device that
was mapped to RELAY[2] bit #1 is used to
activate a custom function. The custom function
is empty because it just an example of what can
be done with the mapped inputs. It could be
filled with any code to do any number of things.

4.1.4 Relay Coil: “SL1_O4”

Again, this is not part of the remote I/O process,
it is just to show how mapped inputs can be
used in ladder logic. In this case, the fourth input
on the first slave device, that was mapped to
RELAY[2] bit #4, is used to activate a relay coil
(SL1_O4). The relay coil SL1_O4
happens to be the coil that controls RELAY[2] bit
#12. This relay bit (SL1_O4) represents output
#4 on slave device #1. That means that when
input #4 on slave device #1 is activated, it gets
mapped to RELAY[2] bit #1, which activates
relay coil SL1_O4. Relay coil SL1_O4 activates
RELAY[2] bit #12 which gets mapped to output
#4 on slave device #1. Essentially, input #4 on
slave device #1 activates output #4 on slave
device #1 indirectly through I/O mapping.

4.1.5 Up Counter: “Count_SL2_O1”

Again, this is not part of the remote I/O process,
it is just to show how mapped inputs can be
used in ladder logic. In this case, the first input
of the second slave device, that was mapped to
RELAY[3] bit #1, is used to activate an up
counter (Count_SL2_O1). All this does is count
up by 1 every time the first input on the second
slave device is activated.

NOTE: in the previous sections, bit #x of
RELAY[I] was referred to many times. When I
say bit #1, I mean the first bit of RELAY[I] which
is actually indexed as “RELAY[I], 0” in code due
to zero indexing. When I say RELAY[I] bit #12, it
would actually be indexed as RELAY[I], 11 in
code even though it is the 12th bit of RELAY[I].

However, the “I” in RELAY[I] is indexed starting
from 1.

4.1.6 Custom function #3:
“Update_OUT”

This function is called every 0.02 seconds and it
involves 11 steps.

1. Compare previous value of relay bit to
current value.

2. If different continue update process,
else leave function without updating.

3. Update old output status in RELAY[I]
with new status

4. Store new status of outputs in temp
variable for bit shifting.

5. Shift outputs in temp variable 8 bits to
the right so output 1 is bit 1.

6. Convert the output status into a string
7. Build the command string with the

output status string
8. Send the command using “Netcmd$”
9. Error checking – check if the response

string is empty
10. Error checking – check if there is a

framing error
11. Error checking – check if there is a

command error
(The error-checking portion has no action if
an error were found. That would have to be
added.)

The code for custom function Update_OUT is
shown below.

4-3

E10 REMOTE I/O APPLICATION NOTE

 4

'This function writes RELAY[I] locations of FMD to outputs 1-4 of e10 device I

'--
IF DM[3995 + I] <> (RELAY[I] & &H0F00) 'compare old output status (DM[3995 +i]) to new

‘output status (RELAY[I] & &H0F00)

DM[3995 +I] = RELAY[I] & &H0F00 'assign new output status to old if changed
DM[3900] = RELAY[I] & &H0F00 'store slave output status in dm for bit manipulation

FOR X = 1 TO 8
RSHIFT DM[3900],1 'shift bits so that slave output bits are in the lower
NEXT ‘nibble of the data being sent

R$ = HEX$(DM[3900], 2) 'convert dm[3900] (RELAY[I] & &H0F00) location into a string

O$ = "@" + G$ + "WO00" + R$ 'build hostlink command

O$ = NETCMD$(3, O$) 'send host link cmd to write location "RELAY[I] &

‘&H0F00" of FMD to outputs 1-4
'--
'Error Checking

IF STRCMP(O$,"") = 0 'check if string is empty
 '*** add error response code here ***
ENDIF

IF STRCMP(O$, "@" + G$ + "FE") = 0 'check for framing error

'*** add error response code here ***
ENDIF

IF STRCMP(O$, "@" + G$ + "EE") = 0 'check for command error
 '*** add error response code here ***
ENDIF
ENDIF
I = I + 1 'next device

Code taken from sample program: “RemoteIO_E10”, Custom function #4: “Update_OUT”

4-4

E10 REMOTE I/O APPLICATION NOTE

 5

4.2 How To Use It

In order to use this sample program, a number
of steps must be taken:

1. The ID of each slave device must be set to

the correct number, starting with 2 and
increasing by 1 up to a maximum of 5. This
can be done by connecting each slave
device to a pc, with WinTrilogi, via RS232
and changing the ID with the WinTrilogi
software. The new ID will be permanent in
the PLC until it’s reset again. The master
PLC can have an ID of 00, 01, or anything
higher than 5.

2. Next the physical network must be set up.

The network should include the master PLC
connected to the slaves through RS485;
also, each device will need power and if
separate power supplies are being used
then all of the commons must be connected
together. Specific instructions for wiring can
be found in the “Serial Communications”
section under “RS485”.

3. Now the program needs to be modified if it is

not already. Modifications should to be
made to the INIT function so that the
variable D is set to the correct value (total
number of devices including master). Also,
the ladder logic may need to be modified
depending on the use of the sample
program.

4. The program can now be downloaded into

the master PLC and then run after a restart.

4-5

E10 REMOTE I/O APPLICATION NOTE

 1

5 LINKS

The links will be organized by section according to the table of contents so that they are easy to find.

5.1 Remote I/O

5.1.1 The Physical Network

For more information on wiring the RS485 network, click here.

5.2 SERIAL COMMUNICATIONS

5.2.1 Auto485

For more information on the Auto485, click here.

5.2.2 Host Link Commands

For more information on Host Link Commands, click here.
The above link downloads the FMD88-10 user manual. You can reference chapter 14
(SERIAL COMMUNICATIONS), chapter 15 (HOST LINK PROTOCOL INTRODUCTION),
and chapter 16 (HOST LINK PROTOCOL FORMAT) of the operation manual for the TRi
‘Super’ PLC. These chapters will provide detailed information on serial communication,
the host link protocol, and the available host link commands, which is applicable to all
‘Super’ PLCs.

5-1

