
Chapter 3 Host Communication

3-1

While a T100MD+ or T100MX+ PLC is running, a host computer or another
T100M+ PLC (this abbreviation is used to refer to both the T100MD+ and
T100MX+ in this manual) may send ASCII string commands to it to read or
write to its inputs, outputs, relays, timers, counters and all the internal
variables. These ASCII commands are known as the "host-link commands"
and are to be serially transmitted (via RS232C or RS485 port) to and from
the controller. The default serial port settings of T100M+ PLC for host-link
communication are: 38400 baud, 8 data bit, 1 stop bit, no parity. The baud
rate and the communication format may be changed using the “SetBAUD”
TBASIC command described in the Programmer’s Reference Part II -
TBASIC.

Multiple Communication Protocols
The competent T100M+ family of PLCs supports many different
communication protocols to allow maximum application flexibility. In
addition to its own native set of communication protocols, the T100M+
PLC also understands and speaks the following protocols:

1. *MODBUS� ASCII mode compatible communication protocol.

2. *MODBUS� RTU mode compatible communication protocol.
(For Rev D board with Firmware revision r32 and above only)

3. *OMRON� Host Link Commands for the C20H PLC family.

*Note: all trademarks belong to their respective owners.

The native host link command protocol will be described in detail in this
chapter as well as in Chapter 4. The MODBUS and OMRON compatible
protocols will be described in Chapter 5.

Native Mode Communication Protocols

When a T100M+ PLC receives a native host-link command from COMM1
or COMM3, it will automatically send a response string corresponding to
the command. This operation is totally transparent to the user and need
not be handled by the user’s program.

All T100M+ PLCs support both point-to-point (one-to-one) and multi-point
(one-to-many) communication protocols. Each protocol has a different
command structure as described below:

3.1 POINT-TO-POINT COMMUNICATION
In a point-to-point communication system, the host computer's
RS232C serial port is connected to the PLC’s COMM1. At any one

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-2

time, only one controller may be connected to the host computer.
The host-link commands do not need to specify any controller ID
code and are therefore of simpler format, as shown below:

Command/Response Block Format (Point to Point)Command/Response Block Format (Point to Point)

 x x *

 Header Data Terminator

Each command block starts with a two-byte ASCII character
header, followed by a number of ASCII data and ends with a
terminator which comprises an '*' character and a carriage return
(ASCII value = 13

10
). The header denotes the purpose of the

command. For example, RI for Read Input, WO for Write Output,
etc. The data is usually the hexadecimal representation of numeric
data. Each byte of binary data is represented by two ASCII
characters (00 to FF).

To begin a communication session, the host computer must first send
one byte of ASCII character: Ctrl-E (=05Hex) via its serial port to the
controller. This informs the controller that the host computer wishes to
send a (point-to-point) host-link command to it. Thereafter, the host
computer must wait to receive an echo of the Ctrl-E character from
the controller. Reception of the echoed Ctrl-E character indicates
that the controller is ready to respond to the command from the host
computer. At this moment, the host computer must immediately
send the command block to the controller and then wait to receive
the response block from the controller. The entire communication
session is depicted in Figure 2-1.

After the controller has received the command, it will send a
response block back to the host computer and this completes the
communication session. If the controller accepts the command, the
response block will start with the same header as the command,
followed by whatever information that has been requested by the
command and the terminator.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-3

Host Computer The M-series PLC

Send Ctrl-E
(05H) and wait
for echo

Send Command
string to controller
Wait for response

Ready to process
command: return
Ctrl-E (05H)

Execute command.
Return Response
string to host

Accept Response
Check for errors

Figure 3.1

If an unknown command is received or if the command is illegal
(such as access to an unavailable output or relay channel), the
following error responseerror response will be received:

Error Response FormatError Response Format

E R *

The host computer program should always check the returned
response for possibilities of errors in the command and take
necessary actions.

3.2 MULTI-POINT COMMUNICATION SYSTEM

In this system, one host computer may be connected to either a
single T100M+ (via either RS232 or RS485) or multiple T100M+ PLCs
on an RS485 network.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-4

3.2.13.2.1 RS485 Network Interface HardwareRS485 Network Interface Hardware

The built-in RS-485 interface allows the T100M+ controllers to
be networked together using very low cost twisted-pair cables.
Standard RS-485 allows up to 32 controllers (including the host
computer node) to be networked together. When fitted with 1/8
power RS485 driver such as the 75HVD3082, up to 256 devices
can be connected together. The twisted-pair cable goes from
node to node in a daisy chain fashion and should be
terminated by a 120 ohm resistor as shown below.

Host Computer with
RS-485 or

T100MD+

Twisted-pair RS485 network cable

120�

Terminating
resistor560

560

+5V

0V

+
_

+ + + +_ _ _ _

RS485
T100MX+
RS485

T28H-Relay
RS485

 M-series PLC

RS485

Figure 3.2

Note that the two wires are not interchangeable so they must
be wired the same way to each controller. The maximum wire
length should not be more than 1200 meters (4000 feet). RS-
485 uses balanced or differential drivers and receivers, this
means that the logic state of the transmitted signal depends
on the differential voltage between the two wires and not on
the voltage with respect to a common ground.

As there will be times when no transmitters are active (which
leaves the wires in "floating" state), it is a good practice to
ensure that the RS-485 receivers will indicate to the CPUs that
there is no data to receive. In order to do this, we should hold
the twisted pair in the logic '1' state by applying a differential
bias to the lines using a pair of 560� to 1K� biasing resistors
connected to a +9V (at least +5V) and 0V supply as shown in
Figure 3-2. Otherwise, random noise on the pair could be
falsely interpreted as data.

The two biasing resistors are necessary to ensure robust data
communication in actual applications. Some RS485 converters
may already have biasing built-in so the biasing resistors may
not be needed. However, if the master is an M-series PLC then
you should use the biasing resistor to fix the logic states to a
known state. Although in lab environment the PLCs may be
able to communicate without the biasing resistors, their use is
strongly recommended for industrial applications.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-5

3.2.23.2.2 Protection of RS485 InterfaceProtection of RS485 Interface

The simple, direct multi-drop wiring shown in Figure 3-2 will work
well if all the networked PLCs are in close proximity and they all
share a common power supply. They will even work for long
distance as long as no wiring error ever occurred. However, in
an industrial environment, the PLCs are most likely far apart and
they each may have their own power supply. Since processes
are often modified regularly and if one day somebody by
mistake shorts one of the PLC’s RS485 to high voltage, all the
PLCs connected to the same RS485 wiring will be fried
simultaneously. This can result in very costly down time for the
whole process, since all the PLCs connected to the network will
need to be repaired.

Hence, for networking over long distances and involving more
than a few PLCs, it is important to either strengthen or protect
the RS485 interface, as described below:

1) You can replace the standard RS485 driver (75176) on the
PLC by a fault-tolerant RS485 driver IC with part number
LT1785AIN8. This 8 pin IC is made by Linear Technology and
can withstand wrong voltages of up to +60V! As an added
bonus, the LT1785AIN8 is a 1/4 power RS485 driver, which
means up to 128 PLCs can be connected together.

Unfortunately this IC is much more expensive than 75176
and hence it is not provided as standard component on the
T100M+ PLC. You can purchase the IC from any major
electronic catalog company or contact sales@tri-plc.com
for a quotation of this IC driver.

2) When using non fault-tolerant RS485 driver such as SN75176
or SN75HVD3082, we strongly recommend the following
protection circuit to be added between every PLC’s RS485
and the twisted pair multi-drop network cable:

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-6

10 � 1/2 W 0.1A Fuses

RS485 Network

9V 1W
Zener

RS485

+

-

Power
0V

Ground the
Shield

24V

Figure 3.3

Note:

� As can be seen from the circuit, the two 9V Zener diodes
clamp the signal voltage to the PLC’s RS485 interface to
between +9V and - 0.7V. If the high voltage persists, the 0.1A
fuse will blow, effectively disconnecting the PLC from the
offending network voltage.

� Even if you choose to replace the RS485 driver by LT1785AIN8
IC instead of using the zener/fuse pair wiring, you should still
use shielded twisted pair cables as the multi-drop network
“backbone” and connect the shield to the 0V (DC ground)
power terminal of every PLC. The grounded shield then
provides a common ground reference for all the different
PLCs’ power supplies. Even though the RS485 network may still
work without a common ground reference because the signal
wire pair will somehow “pull” all the RS485 to some reference
point. Failure to provide a common ground is a potential Failure to provide a common ground is a potential
source of serious troublesource of serious trouble as signal wires with a floating
ground easily induce large voltage differences between
nodes when subjected to electromagnetic interference.
Hence for reliable operation it is important to provide the
common ground. A grounded shield also has the additional
advantage of shielding the electrical signals from EMI.

3.2.33.2.3 Single Master RS485 Networking FundamentalsSingle Master RS485 Networking Fundamentals

RS485 is a half-duplex network, i.e., the same two wires are
used for both transmission of the command and reception of
the response. Of course, at any one time, only one transmitter
may be active. The T100M+ PLCs implement master/slave
network protocol. The network requires a master controller,
which is typically a PC equipped with an RS485 interface. In the

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-7

case of a PC, you can purchase an RS-485 adapter card or an
RS232C-to-RS485 converter and connect it to the RS232C serial
port. A T100M+ PLC can also be programmed to act as the
master, it can communicate with other PLCs by executing the
“NETCMD$” function or the “READMODBUS” or the
“WRITEMODBUS” commands (the latter two are for
communicating using MODBUS protocols only).

Only the master can issue commands to the slave PLCs. To
transmit a command, the master controller must first enable its
RS-485 transmitter and then send a multi-point command to
the network of controllers. After the last stop bit has been sent,
the master controller must relinquish the RS485 bus by disabling
its RS485 transmitter and enabling its receiver. At this point the
master will wait for a response from the slave controller that is
being addressed. Since the command contains the ID of the
target controller, only the controller with the correct ID would
respond to the command by sending back a response string.
For the network to function properly, it is obvious that no two
nodes can have the same ID. You can use the “Setup Serial
Port” command in TLServer to set the ID for each M-series PLC.
You can also use the "IW” command to set the device ID. Also,
all nodes must be configured to the same baud rate and
communication format.

Also, care should be taken to ensure that the power supplies for
all the controllers are properly isolated from the main so that no
large ground potential differences exist between any
controllers on the network.

3.2.43.2.4 MultiMulti--Masters RS485 Networking FundamentalsMasters RS485 Networking Fundamentals

Since any T100MD or T100MX is capable of sending out
network commands, the obvious question is whether multiple
masters are allowed on the RS485 network? It is possible to
have multiple masters on a single RS485 network provided the
issues of collision and arbitration are taken care of. There are
several means to achieve these objectives:

1) Multiple Access with Collision Detection
There is nothing to stop any PLC from sending out host-link
commands to other PLCs. However, If more than one PLC
simultaneously enables their transmitters and send out host-
link commands, then the signals will conflict and the
messages will be garbled up. If the network traffic is low,

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-8

then the solution may be a matter of having the master
check for the correct response after sending out a
command string. If there is error in the response string, the
master should back off the network for a short while (use
different timing for different PLCs) and then re-send the
command until a correct response string is obtained. This
scheme is similar to the CSMA/CD (Carrier Sensing Multiple
Access/Collision-Detection) commonly used in Ethernet.

Fortunately, the “NETCMD$” function of T100M+ PLC
automatically senses the RS485 lines until they are free
before sending out the command string to reduce the
chance of a collision. It also checks the integrity of the
response string for correct FCS (Frame Check Sequence)
characters before returning the string (Please refer to the
Programmer’s Reference for detail description of the
NETCMD$() function).

However, the program must still check the following items in
the response string to verify that the string returned from
NETCMD$() function indeed comes from the PLC that it
had talked to and not from another PLC (which tries to send
a command to someone else):

i) The ID is correct
ii) The header is identical to the command string
iii) The length of response string is correct.

Pros and Cons: This method does not incur any hardware
cost, but it requires careful programming and strict
checking of the response string and hence requires more
effort to program. It is also the least desirable if the network
traffic is moderately high as many collisions will occur and
there is danger of some undetected error being allowed to
pass through.

2) Token Awarding Scheme

A “token” is a software means of telling a PLC that it has
been given the right to temporarily act as the master. A
T100MD+ PLC or a host PC can serve as the token master.
An internal relay bit or a variable of the PLC can be defined
as the token. The token master will begin by giving the token
(i.e., by setting the token relay bit to ‘1’ or the token variable
to some fixed value) to the first PLC on the list. The PLC that
has the token can then send host-link commands to other
PLCs. When it has finished the job it can then send a
command to the token master to relinquish its token. If it is

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-9

based on a fixed timing scheme the master can assume
that the PLC will complete its job after a fixed time (say 0.1
seconds) and turn off its corresponding token relay bit.

The token master then passes the token to the next PLC on
the list and so on until the last PLC has relinquished its token,
and the token is passed back to the first PLC on the list
again. This way at any one time there will only be one active
network master (the one with the token) and hence there is
no danger of conflicting signals or garbled messages to
handle.

Pros and Cons: This method also does not incur any
hardware cost, but it requires the programmer to draw up a
plan on what internal relay or variable to use as the token
and how the PLC can relinquish its token to the token
master. (It could be by fixed timing or by returning a
message to relinquish the token) It is a challenging job for
programmers unfamiliar with networking scheme, but with
some experimentation it can be achieved readily.

3) Rotating Master Signal

In this scheme we make use of the digital inputs of the
T100M+ PLCs to grant the PLC the right to act as the
network master. Lets call this input the “Be the Master” input.
We can use a low cost H-series PLC running a sequencer to
activate the “Be the Master” input line of each PLC one at a
time. Each PLC is given a fixed amount of time to be the
master (e.g. 0.1s each). Only when the “Be the Master”
input is ON can the T100M+ PLC start sending out host-link
commands to other PLCs. So at any one time there will only
be one master on the network and no conflict will occur as
a result.

Pros and Cons: This method is the easiest to program since
there is no need to handle the token with the token master
or perform extensive error check on the response string.
However, this method uses one input of each PLC and as
many outputs on the master-signal generator PLC as there
are PLC masters. It also requires wiring the PLCs to the
master-signal generator PLC and hence is the most costly
method of all.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-10

3.2.53.2.5 Command/Response Block Format (MultiCommand/Response Block Format (Multi--point)point)

@ n n x x x x *

Device ID Header Data FCS Terminator

Each command block starts with the character "@" and two-
byte hexadecimal representation of the controller's ID (00 to
FF), and ends with a two-byte "Frame Check Sequence" (FCS)
and the terminator. FCS is provided for detecting
communication errors in the serial bit-stream. If desired, the
command block may omit calculating the FCS simply by
putting the characters "00" in place of the FCS.

Note: we call “00” the “wildcard” FCS, which is available when
the PLC is in “auto protocol” mode. This is to facilitate easy
testing of multi-point protocol. However, the wildcard FCS is
disabled if the PLC has executed the SETPROTOCOL n, 5 to put
it’s COMM port n into pure native mode. In that case you will
have to supply the actual FCS to your command string.

Calculation of FCSCalculation of FCS

The FCS is 8-bit data represented by two ASCII characters (00
to FF). It is a result of Exclusive OR sequentially performed on
each character in the block, starting from @ in the device
number to the last character in the data. An example is as
follow:

@ 0 4 R V I A 4 8 *

Device ID Header Data FCS

@ 0100 0000
XOR

0 0011 0000
XOR

4 0011 0100
XOR

R 0101 0010
XOR

V 0101 0110
XOR

 I 0100 1001
XOR

A 0100 0001

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-11

0100 1000 = 48
16

Value 4816 is then converted to ASCII characters '4' (0011 0100)
and '8' (0011 1000) and placed in the FCS field.

FCS calculation program exampleFCS calculation program example

The following C function will compute and return the FCS for the
"string" passed to it.

unsigned char compute_FCS(unsigned char *string){
 unsigned char result;
 result = *string++; /*first byte of string*/
 while (*string)
 result ^= *string++; /* XOR operation */
 return (result);
}

A Visual Basic routine for FCS computation is included in the
source code of a sample communication program you can
download from:

 http://www.tri-plc.com/applications/SerialComm.zip.

3.2.63.2.6 Communication ProcedureCommunication Procedure

Unlike the point-to-point communication protocol, the host
computer must NOT send the CTRL-E character before sending
the command block. After the host computer has sent out the
multi-point host-link command block, only the controller with
the correct device ID will respond. Hence it is essential to
ensure that every controller on the RS485 network assumes a
different ID. Otherwise, contention may occur (i.e., two
controllers simultaneously sending data on the receiver bus,
resulting in garbage data being received by the host). On the
other hand, if none of the controller IDs match that specified in
the command block, then the host computer will receive no
response at all.

The PLC automatically recognizes the type of command
protocols (point-to-point or multi-point) sent by the host
computer and it will respond accordingly. If a multi-point
command is accepted by the controller, the response block
will start with a character '@', followed by its device ID and the
same header as the command. This will be followed by the
data requested by the command, a response block FCS and
the terminator.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-12

Framing ErrorsFraming Errors

When the controller receives a multi-point host-link command
block, it computes the FCS of the command and compares it
with the FCS field received in the command block. If the two
do not match, then a "framing error" has occurred. The
controller will send the following Framing Error Response to the
host:

Framing Error RespFraming Error Response Block onse Block (Multi-point only)

@ x x F E x x *

Device ID Header FCS Terminator

Command ErrorsCommand Errors

If an unknown command is received or if the command is illegal
(such as an attempt to access an unavailable channel), the
following error responseerror response will be received:

Error Response FormatError Response Format

@ x x E R x x *

Device ID Header FCS Terminator

The host computer program should always check the returned
response for possibilities of errors in the command and take
necessary action.

3.3 SHOULD YOU USE POINT-TO-POINT OR MULTI-POINT
PROTOCOL?
Although at first the point-to-point protocol appears simpler in format
(having no ID and no FCS computation), the communication
procedure is actually more complex since it involves the need to
synchronize the two communicating devices by exchanging the
Control-E character. The lack of error checking also makes the
protocol less reliable especially in noisy environment.

In fact, the TLServer software as well as the Ethernet XServer will only
accept multi-point communication protocol from the client software
with the exception of the “IR*” command, which is needed to obtain
the ID of a PLC with unknown ID.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-13

Hence, if you were to write your own communication program to talk
to the PLCs, we would strongly recommend using only the multi-point
protocol exclusively due to its simplicity and built-in error checking
capability.

3.4 TROUBLE-SHOOTING AN RS485 NETWORK
a) Single faulty device

If a single device on the RS485 network becomes inaccessible,
problems can be isolated to this particular device. Check for
loose or broken wiring or wrong DIP switch settings. Also double
check the device ID using the host-link command "IR*" sent via
the RS232C port of the PLC. If all attempts fail, either replace the
entire PLC or the SN75176 chip that handles the RS485 interfacing
and try again.

b) Multiple faulty devices

If all the PLCs are inaccessible by the host computer, it may
possibly be due to a faulty RS232C-to-RS485 converter at the PC.
If this is the case, disconnect the RS485 converter from the
network and check it using a single PLC. Replace the converter if
it is confirmed to be faulty. Next check the wire from the
converter to the beginning of the network. A broken wire here can
lead to the failure of the entire network.

Since an RS485 network links many PLCs together electrically and
in a daisy chain fashion, problems occurring along the RS485
network sometimes affect the operation of the entire network. For
example, a broken wire at the terminal of one node may mean
that all the PLCs connected after this node become inaccessible
by the master. If the RS485 interface of one of the PLCs has short-
circuited because of component failure, then the entire network
goes down with it too. This is because no other node is able to
assert proper signals on the two wires that are also common to
the shorted device.

Hence when trouble-shooting a faulty RS485 network, it may be
necessary to isolate all the PLCs from the network. Thereafter,
reconnect one PLC at a time to the network, starting from the
node nearest to the host computer. Use the TRiLOGI program to
check communication with each PLC until the faulty unit has
been identified.

Chapter 4 Command/Response Format

4-1

This chapter describes the detail formats of the command and response
blocks for all M-series PLC host link commands. Only the formats for the
point-to-point communication protocol are presented, but all these
commands are available to the multi-point protocol as well. To use a
command for multi-point system, simply add the device ID (@nn) before
the command header and the FCS at the end of the data (See Chapter 3
for detailed descriptions of multi-point communication command format).

4.1 Device ID Read

 Command Format
I R *

 Response Format
I R 161 160 *

 Device ID (00 to FF)

The device ID is to be used for multi-point communication protocol
where the host computer can selectively communicate with any
controller connected to a common RS485 bus (see Chapter 3 for
details). The ID has no effect for point-to-point communication.

The device ID is stored in the PLC's EEPROM and therefore will remain
with the controller until it is next changed.

4.2. Device ID Write

 Command Format
I W 161 160 *

 Device ID (00 to FF)

 Response Format
I W *

E.g. To set the PLC’s ID to 0A, send command string “IW0A*” to PLC.

4.3 Read Digital Input Channels

 Command Format
R I n n *

 8-bit Channel # (Hex)
 Response Format

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-2

R I 161 160 *

 8-bit Data (Hex)

Definition of Input Channels

The following table shows the input numbers as defined in TRiLOGI's
Input entry table corresponding to the input channel number.

 Bit7 Input/Output Numbers Bit0
CH00: 8 7 6 5 4 3 2 1
CH01: 16 15 14 13 12 11 10 9
CH02: 24 23 22 21 20 19 18 17
CH03: 32 31 30 29 28 27 26 25
CH04: 40 39 38 37 36 35 34 33
CH05: 48 57 56 45 44 43 42 41
CH06: 56 55 54 53 52 51 50 49
CH07: 64 63 62 61 60 59 58 57
CH08: 72 71 70 69 68 67 66 65
CH09: 80 79 78 77 76 75 74 73
CH0A16: 88 87 86 85 84 83 82 81
CH0B16: 96 95 94 93 92 91 90 89
CH0C16: 104 103 102 101 100 99 98 97
CH0D16: 112 111 110 109 108 107 106 105
CH0E16: 120 119 118 117 116 115 114 113
CH0F16: 128 127 126 125 124 123 122 121

The 8-bit inputs of each channel is represented by two bytes ASCII text
expression of its hexadecimal value. For example: if inputs 1 to 3 are
logic '0's, inputs 4 to 10 are logic '1's and all other inputs are logic '0's,
then if you send command “RI00*”, you will get response “RIF8*” (F816

=1111 10002).

4.4 Read Digital Output Channels
 Command Format

R O n n *

 8-bit Channel # (Hex)

 Response Format
R O 161 160 *

 8-bit data (Hex)

Please refer to the Input/Output vs Channel Number table described
in the section “4.3. Read Digital Input Channels” for details.

4.5 Read Internal Relay Channels

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-3

 Command Format
R R n n *

 8-bit Channel # (Hex)

 Response Format
R R 161 160 *

 8-bit data (Hex)

Definition of Internal Relay Channel Numbers

All M-series PLC supports 256 internal relays, the channel definition of
the first 128 internal relays is the same as the inputs and the outputs.
The remaining relays and their assigned channels are shown in the
following table:
 bit7 Relay numbers bit0

CH1016: 136 135 134 133 132 131 130 129
CH1116: 144 143 142 141 140 139 138 137
CH1216: 152 151 150 149 148 147 146 145
CH1316: 160 159 158 157 156 155 154 153
CH1416: 168 167 166 165 164 163 162 161
CH1516: 176 175 174 173 172 171 170 169
CH1616: 184 183 182 181 180 179 178 177
CH1716: 192 191 190 189 188 187 186 185
CH1816: 200 199 198 197 196 195 194 193
CH1916: 208 207 206 205 204 203 202 201
CH1A16: 216 215 214 213 212 211 210 209
CH1B16: 224 223 222 221 220 219 218 217
CH1C16: 232 231 230 229 228 227 226 225
CH1D16: 240 239 238 237 236 235 234 233
CH1E16: 248 247 246 245 244 243 242 241
CH1F16: 256 255 254 253 252 251 250 249

4.6 Read Timer Contacts
Command Format

R T n n *

 8-bit Channel # (Hex)

 Response Format
R T 161 160 *

 8-bit data in Hex

Definition of Timer-Contact Channel Numbers

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-4

A timer contact is a single bit of memory and 8 timer contacts are
grouped into one 8-bit channel similar to that of the inputs, outputs etc.

The following table shows the timer numbers defined in TRiLOGI's
Timer entry table and their corresponding channel numbers.

CH0: 8 7 6 5 4 3 2 1
CH1: 16 15 14 13 12 11 10 9
CH2: 24 23 22 21 20 19 18 17
CH3: 32 31 30 29 28 27 26 25
CH4: 40 39 38 37 36 35 34 33
CH5: 48 57 56 45 44 43 42 41
CH6: 56 55 54 53 52 51 50 49
CH7: 64 63 62 61 60 59 58 57

4.7 Read Counter Contacts
 Command Format

R C n n *

 8-bit channel # (Hex)

 Response Format
R C 161 160 *

 8-bit data in Hex

Definition of Counter-Contact Channel Numbers:

The 64 counter contacts are assigned channel # in exactly the same
way as the 64 timers. Please refer to last section :“4.6. Read Timer
Contacts” for details.

4.8 Read Timer Present Value (P.V.)
 Command Format

R M N n *

 nn: Timer1=00, Timer16=0F.... Timer64=3F

 Response Format
R M 103 102 101 100 *

 Timer present value in Decimal
The present value (PV) of the specified timer is returned in decimal
form as four byte ASCII text characters from 0000 to 9999.

4.9 Read Timer Set Value (S.V.)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-5

 Command Format
R m n n *

 nn: Timer1=00, Timer16=0F.... Timer64=3F

 Response Format
R m 103 102 101 100 *

 Timer Set Value in Decimal

The Set Value (S.V.) of the specified timer is returned in decimal form
as four byte ASCII text characters from 0000 to 9999. Note that this
command header contains ssmall letter “m” instead of “M” in the “RM”
command.

4.10 Read Counter Present Value (P.V.)
 Command Format

R U n n *

 nn: Counter1=00, Counter16=0F.... Counter64=3F

 Response Format
R U 103 102 101 100 *

 Counter present value in Decimal

The Present Value of the specified counter is returned in decimal form
as four byte ASCII text characters from 0000 to 9999.

4.11 Read Counter Set Value (S.V.)

 Command Format
R u n n *

 nn: Counter1=00, Counter16=0F.... Counter64=3F

 Response Format
R u 103 102 101 100 *

 Counter Set Value in Decimal
The Set Value of the specified counter is returned in decimal form as
four byte ASCII text characters from 0000 to 9999. Note that this
header contains ssmall letter “u” instead of “U” in the “RU” command.

4.12 Read Variable - Integers (A to Z)
 Command Format

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-6

R V I alphabet *

 A,B.C....Z
 Response Format

R V I 167 166 165 164 163 162 161 160 *

 8 Hexadecimal Digit for 32-bit integer

E.g. To read the value of the variable “K”, send host-link command
“RVIK*”. If variable K contains the value 12345610 (=1E24016),
PLC will send the response string as “RVI0001E240*”.

4.13 Read Variable - Strings (A$ to Z$)
 Command Format

R V $ alphabet *

 A,B.C....Z
 Response Format

R V $ a a a a a a *

 ASCII characters of the string (variable length)

E.g. To read the value of the string variable “M$”, send host-link
command “RV$M*”. If variable M$ contains the string “Hello
World”, the PLC will send the response string as “RV$Hello
World*”.

4.14 Read Variable - Data Memory (DM[1] to DM[4000])
 Command Format

R V D 163 162 161 160 *

 0001 to 0FA0 (400010)

 Response Format
R V D 163 162 161 160 *

 4 Hexadecimal Digit for 16-bit integer
E.g. To read the value of DM[3600], send host-link command

“RVD0E10*”. If variable DM[3600] contains the value 1234510

(=303916), PLC will send the response string as “RVD3039*”.

4.15 Read Variable - System Variables

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-7

This command allows you to read all the M-series PLC’s 16-bit
system variables such as the inputs[], outputs[], relays[], counters[],
timers[], timers’ P.V., counters’ P.V., CLK[] and DATE[]. Although
inputs, outputs etc. are also accessible via the “RI”, “RO”, “RR”...
commands, the RVS command can access them as 16-bit words
instead of as 8-bit bytes in those commands. For the 32-bit system
variable HSCPV[], use the “RVH” command described in the next
section to access it. It may be more conventional for some SCADA
software driver to use a single header command “RVS” to access all
the I/O, varying only the “type” number to access different I/O types.

 The RVS command also can be used to access the internal
variables used to store ADC, DAC and PWM values obtained during
the latest execution of the ADC(), setDAC or setPWM statement.
These are however not system variables in TBASIC sense. E.g. it is
illegal to use ADC[2] to access the ADC channel #2 in TBASIC (you
have to use the ADC(2) function instead). An 8-bit hexadecimal
number is used to denote the “type” of system variable, as shown in
the following table:

System
Variable

type System
Variable

type

input[] 01 clk[] 08
output[] 02 date[] 09
relay[] 03 - 0A
timer[] 04 ADC* 0B
ctr[] 05 DAC* 0C

timerPV[] 06 PWM* 0D
ctrPV[] 07 * Not a system variable

in TBASIC

 Command Format
R V S n n 161 160 *

 type Index
type (01 to 0D) - denote the type of system variable to access,
index (01 to 1F) - index into the array, starting from 01.

 Response Format
R V S 163 162 161 160 *

 4 Hexadecimal Digit for 16-bit integer

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-8

Example: To read the value of DATE[2] (which represents the month
of the RTC), send command “RVS0902*” and if the PLC
responds with “RVS0005” it means the month is May.

4.16 Read Variable - High Speed Counter HSCPV[]
 Command Format

R V H n *

 Channel: 1 or 2

 Response Format
R V H 167 166 165 164 163 162 161 160 *

 8 Hexadecimal Digit for 32-bit integer

E.g. To read the value of HSCPV[2], send hostlink command
“RVH2*”. If variable HSCPV[2] contains the value 12345610

(=1E24016), PLC will send the response string as
“RVH0001E240*”.

4.17 Write Inputs
 Command Format

W I n n 161 160 *

 Channel # Data
 (00 to 0F)

 Response Format
W I *

4.18 Write Outputs
 Command Format

W O n n 161 160 *

 Channel # Data
 (00 to 0F)

 Response Format
W O *

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-9

4.19 Write Relays

 Command Format
W R n n 161 160 *

 Channel # Data
 Response Format

W R *

4.20 Write Timer-contacts

 Command Format
W T n n 161 160 *

 Channel # Data
 (00 to 07)

 Response Format
W T *

4.21 Write Counter-contacts

 Command Format
W C n n 161 160 *

 Channel # Data
 (00 to 07)

 Response Format
W C *

4.22 Write Timer Present Value (P.V.)

 Command Format
W M n n 103 102 101 100 *

 Timer1=00, New timer PV

 Timer64=3F (Hex)

Response Format

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-10

W M *

Please note that the timer number starts from 00 which represent
timer #1, 01 represents timer #2... and so on.

4.23 Write Timer Set Value (S.V.)

 Command Format
W m n n 103 102 101 100 *

 Timer1=00, New timer SV

 Timer64=3F (Hex)

 Response Format
W m *

Note: the 2nd character is a lower case “m” instead of the upper case
“M” of “WM” command.

4.24 Write Counter Present Value (P.V.)

 Command Format
W U n n 103 102 101 100 *

 Counter1=00, New PV

 Counter64=3F (Hex)

 Response Format
W U *

4.25 Write Counter Set Value (S.V.)

 Command Format
W u n n 103 102 101 100 *

 Counter1=00, New Counter SV

 Counter64=3F (Hex)

 Response Format

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-11

W u *

Note: the 2nd character is a lower case “u” instead of the upper case
“U” of the “WU” command.

4.26 Write Variable - Integers (A to Z)
 Command Format

W V I alphabet 167 166 165 164 163 162 161 160 *

 A,B.C....Z 8 Hexadecimal Digit for 32-bit integer

 Response Format
W V I *

E.g. To assign variable “K” to number 5678910(=0DD516), send
hostlink command “WVIK00000DD5*”.

4.27 Write Variable - Strings (A$ to Z$)

 Command Format
W V $ alphabet a a a a *

 A,B.C....Z ASCII characters of the
 string (variable length)

Response Format
W V $ *

E.g. To assign the string “T100MD+ Super PLC” to the string
variable P$, send hostlink command “WV$PT100MD+ Super
PLC*”.

4.28 Write Variable - Data Memory (DM[1] to DM[4000])

 Command Format
W V D 163 162 161 160 163 162 161 160 *

 16-bit Index to array 16-bit Integer Data
 0001 to 0FA0 (400010)

 Response Format
W V D *

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-12

E.g. To write the value 123410 (=4D216)to DM[1000], send hostlink
command “WVD03E804D2*”. (100010 = 3E816)

4.29 Write Variable - System Variables

System
Variable

type System
Variable

type

input[] 01 clk[] 08
output[] 02 date[] 09
relay[] 03 - 0A
timer[] 04 ADC* 0B
ctr[] 05 DAC* 0C

timerPV[] 06 PWM* 0D
ctrPV[] 07 * Not a system variable in TBASIC

 Command Format
W V S n n 161 160 163 162 161 160 *

 type Index 16-bit Integer Data
type (01 to 0D) - denote the type of system variable to access,
index (01 to 1F) - index into the array, starting from 01.

 Response Format
W V S *

Example: To set clk[1] (which represents the hour of the RTC) to 14,
send the command “WVS0801000E*” to the PLC.

4.30 Write Variable - High Speed Counter HSCPV[]
 Command Format

W V H n 167 166 165 164 163 162 161 160 *

 1 or 2 8 Hexadecimal Digit for 32-bit integer

 Response Format
W V H *

E.g. To clear the value of HSCPV[2], send hostlink command
“WVH200000000*”.

4.31 Update Real Time Clock Module

Command Format

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-13

W r *

Response Format
W r *

If the battery-backed MX-RTC module is installed, this command
forces he PLC to write the values of the TIME[] and DATE[]
variables into the RTC module. This command will be ignored by
a PLC without the RTC module.

4.32 Halting the PLC

Command Format
C 2 *

Response Format
C 2 *

When the PLC receives this command, it temporarily halts the
execution of the PLC's ladder program after the current scan.
However, the PLC continues to scan the I/Os and processes host link
commands sent to it and will report the current I/O data and internal
variables to the host computer.

4.33 Resume PLC Operation

Command Format
C 1 *

Response Format
C 1 *

When the PLC receives this command, it will resume execution of
the ladder program if it has been halted previously by the "C2"
command. Otherwise, this command has no effect.

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-14

Important Note

The following Host Link Commands: RA, RXI, RX$, WA, WXI, WX$ and
Wb are available only on newest M-series PLCs installed with CPU
firmware version r47 & above. You can check your CPU firmware version
by using the “Controller-> Get PLC Hardware Info” on the TRiLOGI
software.

4.34 Read Analog Input (r47 Firmware Only)

This command forces the PLC to refresh the value of its ADC data at
the analog channel before returning its value in the response string
(i.e. no need for PLC to execute ADC(n) function to refresh the
analog input)

 Command Format
R A n n c c *

 Starting Analog Channel count
 Channel # (01-08h) (01 to 08h)

 Response Format
R A 163 162 161 160 … 162 161 160 *

 Starting channel … Ending channel
 16-bit Data (Hex) 16-bit Data (Hex)

E.g. To read 4 channels of Analog starting from Ch #2, Send
“RA0204*”. The response string will contain 4 sets of data for
channel 2, 3, 4 and 5.

4.35 Read EEPROM Integer Data (r47 Firmware Only)

 Command Format
R X I n n n n c c *

 EEPROM starting Word Count
 Address (Hex) (01 to 20h)

 Response Format
R X I 163 162 161 160 … 162 161 160 *

 1st EEPROM Integer … Last EEPROM
 16-bit Data (Hex) 16-bit Data (Hex)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-15

Maximum allowable word count per command is 32 (01 to 20 Hex).
If “count” is > 32, only the first 32 words will be returned.

E.g. To read the 10 words of EEPROM data starting from address
100, send host-link command “RXI00640A*”. The response
string will contain 10 sets of 16-bit data (4 ASCII hex digit per
set).

4.36 Read EEPROM String Data (r47 Firmware Only)

 Command Format
R X $ n n n n *

 EEPROM String starting
 Address (Hex)

 Response Format
R X $ a a a a a a *

E.g. To read the string data stored at EEPROM address 10, send
host-link command “RX$000A*”. The response string will
contain string data stored in the EEPROM (maximum 40
characters).

4.37 Write Analog Output (r47 Firmware Only)

Upon receiving this command, the PLC updates the value of its
DAC data at the analog output channel (i.e. no need for PLC to
execute SETDAC to update the analog output) .

 Command Format
W A n n c c 163 162 161 160 … 161 160 *

 Starting Analog channel DAC output data DAC output data
 channel # (01-02h) count for 1st channel for subsequent ch

 Response Format
W A c c *

 channel count
 (Hex)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-16

4.38 Write EEPROM Integer Data (r47 Firmware Only)

Command Format
W X I n n n n c c 163 162 161 160 …

 Starting EEPROM count Hex data for starting
 Address (0001-xxxx) (01-10h) EEPROM address

163 162 161 160 … 161 160 *

 data for subsequent
 EEPROM addresses

 Response Format
W X I *

Maximum allowable word count per command is 16 (01 to 10 Hex).

4.39 WRITE EEPROM String Data (r47 Firmware Only)

 Command Format
W X $ n n n n a a a *

 EEPROM String ASCII characters
 Address (Hex) (max. 40 characters)

 Response Format
W X $ *

E.g. To write the string data “Hello TRi” at EEPROM String address 12,
send host-link command “RX$000CHello TRi*”.

4.40 Force Set/Clear Single I/O Bit (r47 Firmware Only)

This new “Wbnnnnxx” command allows you to change a single I/O
bit on the PLC. You can force set or clear any single input, output,
relay, timer or counter bit. This has advantage over other write
commands such as WI, WO, etc that affects the entire group of 8 or
16-bits organized into “channels”.

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-17

Command Format
W b n n n n x x *

 I/O Bit address 00 – Clear I/O bit (OFF)
 (Hex) FF – SET I/O bit (ON)

Response Format
W b *

I/O Type Bit address nnnn (Hex)
Input #1 to #256 0000 to 00FF

Output #1 to #256 0100 to 01FF

Timer #1 to #256 0200 to 02FF

Counter #1 to #256 0300 to 03FF

Relay #1 to #256 0400 to 04FF

Relay #257 to #512 0500 to 05FF

E.g. to force output 1 to ON, send “Wb0100FF*”. To turn it OFF, send
“Wb010000*”

4.41 Testing of Host Link Commands
You can try out all the hostlink commands using the TLServer’s “Serial
Communication Setup”. However, the TLServer is designed to
accept only multi-point protocol except the “IR*” command (which
is necessary to obtain the device ID from the PLC). So you have to
enter all your host link commands in multi-point format.

Since the multi-point protocol requires an FCS (frame check
sequence) character to be appended to the end of the command
string, you may be able to get around it by using the “wildcard” FCS
“00” in place of the actual FCS. E.g. To read input channel 02 from
PLC with ID = 01, you can enter the command string as
“@01RI0200*”.

For TLServer version 2.1 and above, there is an “FCS” button that let
you compute the actual FCS for the string in the command string
text field. You can then use the actual FCS with the command string
to completely test your command. E.g. If you type in the string
“@01RI02” in the command string (but do not press Enter), then
click on the “FCS” button, the FCS for this string will be computed
and shown as “FCS = 58”, as shown in the following figure:

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-18

You now can enter the complete command string as
“@01RI0258*” and it will be accepted by TLServer. (Note: If the PLC
has executed a SETPROTOCOL n,5 to configure its serial port into
pure native mode, then wildcard FCS will not be accepted and you
must use the actual FCS with your command. The FCS button
makes it much easier than computation by hand).

If you have changed some data using the write command, then
activate On-Line Monitoring and examine the changes made using
the “View Variables” window.

4.42 Visual Basic Sample Program

To help users get started writing their own Visual Basic program to
communicate with the PLC, we have created a sample Visual
Basic program with full source code listing. Please visit the following
web page to download the visual basic sample program.

http://www.tri-plc.com/applications/VBsample.htm

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-19

4.43 Inter-PLC Networking Using NETCMD$ Command

All M-series PLCs are able to send out host link commands to other
M-series or H-series PLCs using the built-in TBASIC function
NETCMD$(). This function accepts host link commands in multi-
point format and automatically computes the Frame Check
Sequence (FCS) characters, append them to the command string
and send out the whole command string together with the
terminators. The function then waits for a response string and
checks the integrity of the received response string for error. This
function returns a string only if a proper response string has been
received. Please refer to the TBASIC Reference for detailed
explanation of this command.

The NETCMD$() function therefore greatly simplifies the
programming tasks for handling networking between PLCs. The
programmer only needs to construct the correct command string
according to the formats described in this chapter, pass the
formatted string to the NETCMD$() function and then check for the
response string. An M-series PLC may use the NETCMD$ to map
the I/O of another PLC into its internal relays and use the other PLC
as its remote I/O.

There are two programming examples in your “TRILOGI\TL4”
directory which illustrate the use of NETCMD$() to map I/Os of
slave PLC to the master. Please study the two examples: “REMOTE-
H.PC4” and “REMOTE-M.PC4” carefully to understand the
mechanism of mapping I/Os between the PLC. The TRiLOGI
program “REMOTE-H.PC4” will work on both H- and M-series PLCs
as slaves , whereas the program “REMOTE-M.PC4” will only work
with M-series slave PLC. This is because the M-series host link
command set is a superset of H-series host link command set, and
this example uses the more efficient M-series host link commands
to read/write 16-bit data for networking between M-series PLC.

4.44 Inter PLC Networking Using MODBUS Protocols
The T100M+ PLCs may also pass data to each other using special
MODBUS commands which are even simpler to use than NETCMD$
but are restricted to accessing variables that are mapped into
MODBUS address structure. Please refer to the next chapter as well
as the TBASIC Reference manual for details on using the
READMODUS and WRITEMODBUS as well as the READMB2 and
WRITEMB2 commands.

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-20

4.45 Using OMRON Host Link Commands
Since the T100M+ PLCs also support OMRON C20H Host Link
commands, which are very similar in construct to our multi-point
command/response format, you can also make use of OMRON
commands to supplement the native host link commands.

We will only discuss four of the OMRON host link commands “RR”,
“WR”, “RD” and “WD” in this section because these commands
can be used by users to read/write to multiple I/O registers and
data memory in a single command (Note: maximum length of
command string should be <=80 characters).

Note: Since the M-series native protocol command set typically
only supports read/write of single variable and data memory, if you
want to read/write multiple memory location in a single command
you can make use of these OMRON host link commands.

I. Read IR Registers

This command refers to Table 5.1 in Chapter 5 to map the PLC’s I/Os
to OMRON IR register space from IR0 to IR519

Command Format
@ d d R R n n n n c c c c

 Device ID Header IR Address (Dec) IR count (Hex)

f f *

 FCS

 Response Format
@ d d R R s s 163 162 161 160 … …

 Device ID Header Status 1st Data (Hex)
 00 – OK
 15 - Bad

163 162 161 160 f f *

 Last data FCS

 E.g. To read Timer PV #1 to #7 using this command, send:

 “@01RR012800074D*”

The PLC will send return a response “@01RR00xxxxyyyyzzzz….*”

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-21

II. WRITE IR Registers

This command refers to Table 5.1 in Chapter 5 to map the PLC’s I/Os
to OMRON IR register space from IR000 to IR519

Command Format
@ d d W R n n n n 163 162 161 160 ….

 Device ID Header IR Start Addr(Dec) 1st data

163 162 161 160 f f *

 Last data FCS

 Response Format
@ d d W R s s f f *

 Device ID Header Status FCS
 00 – OK

 E.g. To Write to CtrPV #1 to #2 using this command, send:

 “@01WR0256xxxxyyyyff*”

where xxxx and yyyy are the hex values to be written to CtrPV 1 & 2.

III. Read Data Memory DM[1] to DM[4000]

Command Format
@ d d R D n n n n c c c c

 Device ID Header DM Address (Dec) DM count (Hex)

f f *

 FCS
 Response Format

@ d d R D s s 163 162 161 160 … …

 Device ID Header Status 1st Data (Hex)
 00 – OK

163 162 161 160 f f *

 Last data FCS

 E.g. To read DM#112 to #130 (19 words), send:

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-22

 “@01RD0112001357*”

The PLC will send return a response “@01RD00xxxxyyyyzzzz…*”

IV. WRITE Data Memory DM[1] to DM[4000]

Command Format
@ d d W D n n n n 163 162 161 160 ….

 Device ID Header DM Start Addr(Dec) 1st data

163 162 161 160 f f *

 Last data FCS

 Response Format
@ d d W D s s f f *

 Device ID Header Status FCS
 00 – OK

 E.g. To Write to DM#1200 to #1201 using this command, send:

 “@01WD1200xxxxyyyyff*”

where xxxx and yyyy are the values to be written to DM[1200] &
DM[1201].

