
Configuring the MT6070iE as a Slave

Figure 1: MT6070iE Serial HMI

1. Introduction

The MT6070iE is a master by default and is able to connect to a single PLC slave via RS232 or
RS485.

It is possible to configure the MT6070iE as a Modbus slave (either ASCII or RTU) so that the PLC
can become the master.

This document will briefly describe the benefits and considerations of using the HMI as a slave and
then describe how to configure the HMI as a slave as well as how to interact with the HMI from the
PLC program. A sample program for the HMI called “HMI Configured as Modbus RTU Slave.mtp”
(done in EBPRO) and a sample program for the PLC called “MT6070iE Configured as Modbus
RTU Slave.PC6” (done in TRiLOGI) will be packaged with this document for download and will be
referenced in this document for example purposes. The configuration process will be described for
Modbus RTU only since both sample programs use Modbus RTU.

A. Benefits

The PLC can communicate with additional devices that are configured with the same protocol as
the HMI (either Modbus ASCII or RTU).

The PLC CPU will not be interrupted frequently as the PLC program will dictate how often the PLC
communicates with the HMI.

The PLC program can check every command to verify a successful response was received.

B. Considerations

HMI objects are not directly linked PLC I/O, register, or memory, so the PLC must be programmed
to map the necessary data to the HMI.

The TRi_PLC protocol cannot be used when the HMI is a slave; so only integer data can be
mapped to the HMI, but not string data.

The HMI cannot directly indicate whether communication has been lost.

Configuring the MT6070iE as a Slave

2. HMI Configuration and Setup

A. Configure the MT6070iE as a Modbus RTU Slave:

When you start a new project with EBPRO the “System Parameter Settings” window will pop up.
This is where you configure the MT6070iE protocol, which will be Modbus RTU as a slave. You
can also get to this window by selecting “System Parameters” from the Edit menu. Do the following
to setup the HMI protocol:

1. Select “New” so that the “Device Properties” window pops up, which allows a new device to
be added – the PLC in this case.

2. Select “MODBUS Server” as the PLC type, which is used for Modbus RTU as a slave.
Refer to Figure 1 below.

3. Choose the type of serial connection from the “PLC I/F” menu, which should either be
RS232 or RS485 depending on how the HMI will be connected to the PLC.

4. Set the “PLC default station no.” to the ID currently configured for the PLC (default is 01).
5. Click on the “Settings” button beside the COM field to select the HMI COM port being used

and to configure the baud settings. A new window will open where you need to select the
COM port and set the baud rate, data bits, parity, and stop bits so that they match what is
set in the PLC. The default baud settings for the PLC are 38400, 8 data bits, no parity, and
1 stop bit. Refer to Figure 2 below. For the MT6070iE, choose COM1 since that is the only
option.

6. The setup is complete, so you can accept the changes and do any other necessary
configuration.

Figure 1: PLC Protocol Configuration in EBPRO

Configuring the MT6070iE as a Slave

Figure 2: HMI Baud Rate Configuration in EBPRO

B. Word and Bit Addresses used in the HMI

Since the HMI is used a slave, any HMI objects that exchange data with the PLC use the HMI
memory locations, which the PLC program will end up reading from and writing to.
The easiest way to map data between the HMI and PLC is to use the “LW” memory locations for
data words (i.e. Mapping DM[] variables) and the LW_Bit locations for data bits (ie. Mapping digital
I/O).

There are 9000 LW memory locations available to the user in the HMI memory, which are between
0 and 8999 (LW addresses 9000 and up are reserved for the HMI).

The LW_Bit locations are grouped in 16-bit words and shared with the LW locations. This means
you need to be careful not to overlap the LW locations being used as words with the ones used as
bits.

The LW-Bit addressing is as follows:

Address Range LW Location Bit Locations
0 to 15 0 0 to 15 of LW0
100 to 115 1 0 to 15 of LW1
200 to 215
…

2 0 to 15 of LW1

899900 to 899915 8999 0 to 15 of LW8999

C. Configuring HMI Word and Bit Objects

The sample HMI program “HMI Configured as Modbus RTU Slave.mtp” will be referred to here.

If you open the ND_0 numeric display object properties (the object with the “DM[1]” label above it),
you will see the address is set to LW 1. Refer to Figure 3 below. This is all you have to do in the
HMI for that particular object because the address will be mapped to DM[1] in the PLC program,
since the PLC will be the master.

Configuring the MT6070iE as a Slave

Figure 3: Object properties for ND_0 in HMI program

If you open the BL_0 bit lamp object properties (the object with the “In 1” label on it), you will see
the address is set to LW_Bit 400100. Refer to Figure 4 below. As per the above address map
table, this is using bit 0 of LW 4001. This is all you have to do in the HMI for that particular object
because the address will be mapped to digital input #1 in the PLC program, since the PLC will be
the master.

Figure 4: Object properties for BL_0 in HMI program

3. Mapping Data and I/O to the HMI in the PLC Program

Normally, the HMI is the master and the PLC is the slave and no PLC programming is necessary
for communication between the HMI and PLC in that scenario. However, the PLC is the master in
this case so it is the one that sends commands to read and write data in the HMI.

Since the LW memory locations are being used for data words and bits (LW_Bit) in the HMI, it is
possible to use the WRITEMODBUS and READMODBUS commands for all communication
because the LW memory is mapped to the 4x Modbus holding register locations that these
commands can easily access.

Here is a memory map between the LW locations in the HMI, the Modbus offset address used in
the PLC commands, and the data or I/O register it corresponds to.

LW Address in LW Bit Range Modbus Offset Address for Data Register or I/O Range in

Configuring the MT6070iE as a Slave

HMI WRITEMODBUS and
READMODBUS

the PLC

1 N/A 1 DM[1]
2
….
….

N/A
….
….

2
….
….

DM[2]
….
….

4000 N/A 4000 DM[4000]
4001 400100 to

400115
4001 INPUT[1] (1st 16 digital inputs)

4002 400200 to
400215

4002 OUTPUT[1] (1st 16 digital
outputs)

5001 N/A 5001 ADC(1) (analog input #1)
5002 N/A 5002 ADC(2) (analog input #2)

NOTE: This memory map is only a suggestion and was used for the HMI and PLC sample
programs provided with this write-up; however, a different map between the HMI and PLC could be
created. This map could also be extended to include additional PLC registers and memory.
The PLC Code

The PLC sample program included with this document is “MT6070IE Configured as Modbus RTU
Slave.PC6”. Below are simple examples of PLC code based on the sample program code.

Example #1: Writing the Value of DM[1] to the HMI

You would use the following command in a TBASIC custom function to write the current value of
DM[1] into the corresponding LW register in the HMI (per the above memory table).

WRITEMODBUS 11,1,1, DM[1]

The first parameter 11 means the command is in Modbus RTU and is being sent out of COM1 on
the PLC.

The second parameter 1 means the PLC ID is 01. Normally you would put the ID of the slave
device, not the PLC, but the MODBUS SLAVE protocol in the MMI requires that the ID be of the
master device, which is the PLC in this case.

The third parameter 1 is the MMI memory address - LW1, which is what has been designated as
DM[1] for this write-up and the accompanying sample programs.

The fourth parameter DM[1] is the data, which will be the value stored in DM[1].

Example #2: Reading the Value of DM[1000] from the HMI

It is also possible for a DM[] value to be entered on the HMI and read by the PLC. You would use
the following command in a TBASIC custom function to read the current value of DM[1000] from
the corresponding LW register in the HMI (per the above memory table) and write it into the actual
DM[1000] address in the PLC.

DM[1000] = READMODBUS (11,1,1000)

The three parameters are the same as the first three parameters from the above WRITEMODBUS
command, except the address is 1000 and is mapped to LW1000 in the HMI.

Configuring the MT6070iE as a Slave

IMPORTANT NOTE:
When communicating with the HMI from the PLC, the device ID must be the
ID of the master (source device), which is the PLC, instead of the slave
(destination device).

Normally you would put the ID of the slave device, not the PLC, but the MODBUS
SLAVE protocol in the MMI requires that the ID be of the master device, which is the
PLC in this case.

	
	Figure 1: MT6070iE Serial HMI
	
	1. Introduction
	
	The MT6070iE is a master by default and is able to connect to a single PLC slave via RS232 or RS485.
	
	It is possible to configure the MT6070iE as a Modbus slave (either ASCII or RTU) so that the PLC can become the master.
	
	This document will briefly describe the benefits and considerations of using the HMI as a slave and then describe how to configure the HMI as a slave as well as how to interact with the HMI from the PLC program. A sample program for the HMI called “HMI Configured as Modbus RTU Slave.mtp” (done in EBPRO) and a sample program for the PLC called “MT6070iE Configured as Modbus RTU Slave.PC6” (done in TRiLOGI) will be packaged with this document for download and will be referenced in this document for example purposes. The configuration process will be described for Modbus RTU only since both sample programs use Modbus RTU.
	
	A. Benefits
	
	The PLC can communicate with additional devices that are configured with the same protocol as the HMI (either Modbus ASCII or RTU).
	
	The PLC CPU will not be interrupted frequently as the PLC program will dictate how often the PLC communicates with the HMI.
	
	The PLC program can check every command to verify a successful response was received.
	
	B. Considerations

	
	HMI objects are not directly linked PLC I/O, register, or memory, so the PLC must be programmed to map the necessary data to the HMI.
	
	The TRi_PLC protocol cannot be used when the HMI is a slave; so only integer data can be mapped to the HMI, but not string data.
	
	The HMI cannot directly indicate whether communication has been lost.
	
	2. HMI Configuration and Setup
	
	A. Configure the MT6070iE as a Modbus RTU Slave:

	
	When you start a new project with EBPRO the “System Parameter Settings” window will pop up. This is where you configure the MT6070iE protocol, which will be Modbus RTU as a slave. You can also get to this window by selecting “System Parameters” from the Edit menu. Do the following to setup the HMI protocol:
	
	1. Select “New” so that the “Device Properties” window pops up, which allows a new device to be added – the PLC in this case.
	2. Select “MODBUS Server” as the PLC type, which is used for Modbus RTU as a slave. Refer to Figure 1 below.
	3. Choose the type of serial connection from the “PLC I/F” menu, which should either be RS232 or RS485 depending on how the HMI will be connected to the PLC.
	4. Set the “PLC default station no.” to the ID currently configured for the PLC (default is 01).
	5. Click on the “Settings” button beside the COM field to select the HMI COM port being used and to configure the baud settings. A new window will open where you need to select the COM port and set the baud rate, data bits, parity, and stop bits so that they match what is set in the PLC. The default baud settings for the PLC are 38400, 8 data bits, no parity, and 1 stop bit. Refer to Figure 2 below. For the MT6070iE, choose COM1 since that is the only option.
	6. The setup is complete, so you can accept the changes and do any other necessary configuration.
	
	
	Figure 1: PLC Protocol Configuration in EBPRO
	
	
	Figure 2: HMI Baud Rate Configuration in EBPRO
	
	B. Word and Bit Addresses used in the HMI

	
	Since the HMI is used a slave, any HMI objects that exchange data with the PLC use the HMI memory locations, which the PLC program will end up reading from and writing to.
	The easiest way to map data between the HMI and PLC is to use the “LW” memory locations for data words (i.e. Mapping DM[] variables) and the LW_Bit locations for data bits (ie. Mapping digital I/O).
	
	There are 9000 LW memory locations available to the user in the HMI memory, which are between 0 and 8999 (LW addresses 9000 and up are reserved for the HMI).
	
	The LW_Bit locations are grouped in 16-bit words and shared with the LW locations. This means you need to be careful not to overlap the LW locations being used as words with the ones used as bits.
	
	The LW-Bit addressing is as follows:
	
	Address Range
	LW Location
	Bit Locations
	0 to 15
	0
	0 to 15 of LW0
	100 to 115
	1
	0 to 15 of LW1
	200 to 215 …
	2
	0 to 15 of LW1
	899900 to 899915
	8999
	0 to 15 of LW8999
	
	C. Configuring HMI Word and Bit Objects

	
	The sample HMI program “HMI Configured as Modbus RTU Slave.mtp” will be referred to here.
	
	If you open the ND_0 numeric display object properties (the object with the “DM[1]” label above it), you will see the address is set to LW 1. Refer to Figure 3 below. This is all you have to do in the HMI for that particular object because the address will be mapped to DM[1] in the PLC program, since the PLC will be the master.
	
	
	Figure 3: Object properties for ND_0 in HMI program
	
	If you open the BL_0 bit lamp object properties (the object with the “In 1” label on it), you will see the address is set to LW_Bit 400100. Refer to Figure 4 below. As per the above address map table, this is using bit 0 of LW 4001. This is all you have to do in the HMI for that particular object because the address will be mapped to digital input #1 in the PLC program, since the PLC will be the master.
	
	
	Figure 4: Object properties for BL_0 in HMI program
	
	3. Mapping Data and I/O to the HMI in the PLC Program
	
	Normally, the HMI is the master and the PLC is the slave and no PLC programming is necessary for communication between the HMI and PLC in that scenario. However, the PLC is the master in this case so it is the one that sends commands to read and write data in the HMI.
	
	Since the LW memory locations are being used for data words and bits (LW_Bit) in the HMI, it is possible to use the WRITEMODBUS and READMODBUS commands for all communication because the LW memory is mapped to the 4x Modbus holding register locations that these commands can easily access.
	
	Here is a memory map between the LW locations in the HMI, the Modbus offset address used in the PLC commands, and the data or I/O register it corresponds to.
	
	
	
	
	
	
	LW Address in HMI
	LW Bit Range
	Modbus Offset Address for WRITEMODBUS and READMODBUS
	Data Register or I/O Range in the PLC
	1
	N/A
	1
	DM[1]
	2
	….
	….
	N/A
	….
	….
	2
	….
	….
	DM[2]
	….
	….
	4000
	N/A
	4000
	DM[4000]
	4001
	400100 to 400115
	4001
	INPUT[1] (1st 16 digital inputs)
	4002
	400200 to 400215
	4002
	OUTPUT[1] (1st 16 digital outputs)
	5001
	N/A
	5001
	ADC(1) (analog input #1)
	5002
	N/A
	5002
	ADC(2) (analog input #2)
	
	NOTE: This memory map is only a suggestion and was used for the HMI and PLC sample programs provided with this write-up; however, a different map between the HMI and PLC could be created. This map could also be extended to include additional PLC registers and memory.
	The PLC Code
	
	The PLC sample program included with this document is “MT6070IE Configured as Modbus RTU Slave.PC6”. Below are simple examples of PLC code based on the sample program code.
	
	Example #1: Writing the Value of DM[1] to the HMI
	
	You would use the following command in a TBASIC custom function to write the current value of DM[1] into the corresponding LW register in the HMI (per the above memory table).
	
	WRITEMODBUS 11,1,1, DM[1]
	
	The first parameter 11 means the command is in Modbus RTU and is being sent out of COM1 on the PLC.
	
	The second parameter 1 means the PLC ID is 01. Normally you would put the ID of the slave device, not the PLC, but the MODBUS SLAVE protocol in the MMI requires that the ID be of the master device, which is the PLC in this case.
	
	The third parameter 1 is the MMI memory address - LW1, which is what has been designated as DM[1] for this write-up and the accompanying sample programs.
	
	The fourth parameter DM[1] is the data, which will be the value stored in DM[1].
	
	Example #2: Reading the Value of DM[1000] from the HMI
	
	It is also possible for a DM[] value to be entered on the HMI and read by the PLC. You would use the following command in a TBASIC custom function to read the current value of DM[1000] from the corresponding LW register in the HMI (per the above memory table) and write it into the actual DM[1000] address in the PLC.
	
	DM[1000] = READMODBUS (11,1,1000)
	
	The three parameters are the same as the first three parameters from the above WRITEMODBUS command, except the address is 1000 and is mapped to LW1000 in the HMI.
	
	
	
	
	
	
	
	
	
	
	
	
	
	

