T100MD1616+ to FMD1616-10 Upgrade Notes

The FMD1616-10 is designed to be a replacement for the T100MD1616+ but with more high- precision analog I/O and of a 10/100Mbps Ethernet port. As a result there are differences that have to be taken into consideration when upgrading your current design from T100MD1616+ to FMD1616-10.

A. Is FRAM-RTC Required?

The first thing to check is whether you need to buy the FRAM-RTC together with your FMD1616-10. An important difference to consider when upgrading a *basic* (i.e. without all the add-on options) T100MD1616+ PLC to an FMD1616-10 is that the *basic* FMD1616-10 has only 1000 words of DM: from DM[1] to DM[1000], and there is no built-in EEPROM. However, the FMD1616-10 does have 1024 words of RAM-shadowed Flash memory that acts like a pseudo EEPROM, only that the software needs to execute a special command to save the content to the flash memory for permanent storage.

The optional **FRAM-RTC** module adds a battery-backed real-time clock to the FMD PLC (just like what MX-RTC does for the T100MD+ PLC), extends the DM from DM[1001] to DM[4000], and adds 11K words of non-volatile FRAM memory (equivalent to an extremely fast EEPROM).

Therefore, you will need a FRAM-RTC if any of the following applies to your current application:

- 1) You need to use DM[1001] to DM[4000] and these cannot be moved down to DM[1] to DM[1000] through a code rewrite.
- 2) You need more than 1024 words of EEPROM for data storage, or you need to regularly write to the EEPROM memory for data logging purpose.
- 3) You need a battery-backed real time clock to keep the time when the PLC is powered off.

B. Analog I/O Connection

The FMD1616-10's digital I/Os are designed to be drop-in replacement for T100MD1616+ PLC.

However, when designing the FMD1616-10 we weighed the pros and cons of either providing same analog I/O interface as the T100MD1616+ to allow near drop-in replacement, or providing more analog I/O with industry standard 0-5V or 0-10V interface but abandon the true compatibility with the old design.

In the end it was decided that keeping the same analog I/O interface and connector across all the FMD PLC and F-series PLC outweighs the benefit of keeping to true compatibility to the T100MD1616+. Hence users should note the important differences when upgrading to FMD1616-10:

- 1) T100MD1616+ uses two banks of screw terminals for all its analog I/O, whereas the FMD1616-10 uses a single DB15 connector for all its analog I/Os. A DB15 solder tail connector is shipped with each FMD1616-10 PLC.
- 2) FMD1616-10 features 8 channel of 12-bit, 0-5V analog inputs and 2 channels of 12-bit analog outputs that can be configured by software to be 0-5V or 0-10V. Contrast this with T100MD1616+, which only has 4 channels of 10-bit analog inputs (2 ch x 0-1V, 2 ch x 0-5V) and 1 channel of 8-bit analog outputs (0-20mA) provided via two banks of screw terminals.
- 3) Since there is no current loop analog output on the FMD1616+ PLC, if this is required the user will need to source for an external 0-5V to 0-20mA converter. TRi may in the future provide such an interface via a converter board.

Please refer to Chapter 1 of the FMD1616-10 User's Manual for the wiring of the analog I/Os pins.

C. Non-volatile Variables and I/Os

Even with the installation of the FRAM-RTC- on the FMD1616-10, only the following variables can be configured to be non-volatile: A to Z, A\$ to Z\$ and DM[1] to DM[4000]. On the T100MD1616+ with MX-RTC, even some system variables such as RELAY[], EMINT[], EMLINT[] can be made non-volatile via DIP switch #1.

You can however overcome this by storing the system variable that needs to be made non-volatile into FRAM memory on the FRAM-RTC at every scan of the ladder logic program. A first-scan initialization function can then load the FRAM data back into the system variables. **Note**: the FRAM can be re-written unlimited number of times and read/write at full speed so it is a much better non-volatile memory than EEPROM.

Please refer to the next page for a comparison table that shows the main differences between the FMD1616-10 and the T100MD1616+. You will quickly discover that the FMD1616-10 + FRAM-RTC combination is more powerful and offers much better performance/cost ratio than a T100MD1616+ with 3 other optional peripherals (MX-RTC, M2018P and Xserver).

You will find that the FMD1616-10 delivers performance that is totally unmatched by any small PLCs on the market, and could easily be a game changer that you could use to upgrade the capability of your equipment beyond those of your competitors.

---- Please Turn to next page to view The Comparison Table ----

FMD1616-10 vs T100MD-1616+ Comparison Table

	FMD1616-10	T100MD-1616+
Ethernet	Built-in	-
Program Memory	8 K words	6 K words
CPU Speed	4 μs per step	10 μs per step
DM	1 to 1000	1 to 4000
Non-volatile EEP Memory	No real EEPROM. 1024 words emulated by RAM- shadowed Flash memory	1700 words
Analog Inputs - Resolution - No. of Ch.	12-bit 8 x (0-5V)	10-bit 2 x (0-1V), 2 x (0-5V)
Connector type	DB15	Screw Terminal
Analog Outputs - Resolution - No. of Ch. Connector type	12-bit 2 x (0-5V or 0-10V-software selectable) DB15	8-bit 1 x (0-20mA) Screw Terminal
PWM Outputs - Resolution - No. of Ch Frequencies	0.01% (1 in 10000) 4 50 Hz to 50KHz	0.4% (1 in 250) 2 8 fixed frequecies
Serial Port RS232 Interface Compatible Baud Rates Incompatible Baud Rates	True EIA-232 110-1200,2400,4800,9600,19200,38400 57600,100K,115.2K,230.4K	Transistor level-shifter 110-1200,2400,4800,9600,19200,38400 62500,100K, 250K,500K

	FMD1616-10 + FRAM-RTC	T100MD-1616 + MX-RTC + M2018P + Xserver
Program Memory	16 K words	8.2 K words
RS232 port	Available	Used by Xserver exclusively
DM	1 to 4000	1 to 4000
Non-volatile Variables		
A to Z, A\$ to Z\$	Yes	Yes
DM[1] to DM[4000]	Yes	Yes
Sys Var. (e.g. INPUT[])	No	Yes
EMINT[], EMLINT[]	No	Yes
Non-volatile EEP memory	Ferromagnetic RAM	EEPROM
- No of Words	11,000	7,750
Write Speed	Very Fast	Slow
- Max Erase/Write	Unlimited	100,000 cycles
Real Time Clock		
Backup Battery	Replaceable	Non-replaceable
	·	·